These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31259951)

  • 1. Ultrafast and ultrahigh-resolution optical vector analysis using linearly frequency-modulated waveform and dechirp processing.
    Li S; Xue M; Qing T; Yu C; Wu L; Pan S
    Opt Lett; 2019 Jul; 44(13):3322-3325. PubMed ID: 31259951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-calibrated optical vector analyzer with a largely extended measurement range based on linearly frequency-modulated waveform and recirculating frequency shifter.
    Wang B; Zhang W; Fan X
    Opt Express; 2020 Sep; 28(19):28536-28547. PubMed ID: 32988121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh-resolution optical vector analysis using fixed low-frequency electrical phase-magnitude detection.
    Xue M; Chen W; Heng Y; Qing T; Pan S
    Opt Lett; 2018 Jul; 43(13):3041-3044. PubMed ID: 29957776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.
    Xue M; Pan S; Zhao Y
    Opt Lett; 2015 Feb; 40(4):569-72. PubMed ID: 25680152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.
    Xue M; Pan S; He C; Guo R; Zhao Y
    Opt Lett; 2013 Nov; 38(22):4900-2. PubMed ID: 24322161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-resolution optical vector analyzer for multiple parallel measurements based on frequency-domain analysis.
    Wang B; Fan X; Zhao S; Zhang W
    Opt Lett; 2022 May; 47(9):2318-2321. PubMed ID: 35486789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical vector analyzer with time-domain analysis capability.
    Li S; Qing T; Wang L; Chen X; Fang Y; Tang X; Cao M; Pan S
    Opt Lett; 2021 Jan; 46(2):186-189. PubMed ID: 33448984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy improvement of optical vector network analyzer based on single-sideband modulation.
    Xue M; Pan S; Zhao Y
    Opt Lett; 2014 Jun; 39(12):3595-8. PubMed ID: 24978545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-resolution and wideband optical vector analysis for arbitrary responses.
    Liu S; Xue M; Fu J; Wu L; Pan S
    Opt Lett; 2018 Feb; 43(4):727-730. PubMed ID: 29444063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator.
    Tang Z; Pan S; Yao J
    Opt Express; 2012 Mar; 20(6):6555-60. PubMed ID: 22418538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation.
    Chen W; Zhu D; Xie C; Zhou T; Zhong X; Pan S
    Opt Express; 2018 Dec; 26(25):32491-32499. PubMed ID: 30645415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio.
    Wang WT; Liu JG; Mei HK; Zhu NH
    Opt Express; 2016 Jan; 24(1):388-99. PubMed ID: 26832269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of linear frequency-modulated signals with improved time-bandwidth product based on an optical frequency comb.
    Wang X; Ma J; Zhang Q; Xin X
    Appl Opt; 2019 Apr; 58(12):3222-3228. PubMed ID: 31044800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.
    Zhang F; Guo Q; Pan S
    Sci Rep; 2017 Oct; 7(1):13848. PubMed ID: 29062093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonics-assisted joint communication-radar system based on a QPSK-sliced linearly frequency-modulated signal.
    Wang S; Liang D; Chen Y
    Appl Opt; 2022 Jun; 61(16):4752-4760. PubMed ID: 36255956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of LFM Radar Signals and Chirp Rate Estimation Based on Time-Frequency Rate Distribution.
    Swiercz E; Janczak D; Konopko K
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandwidth-enhanced LFM waveform generator based on dynamic control of an optically injected semiconductor laser.
    Zhou P; Zhu J; Zhang R; Li N
    Opt Lett; 2022 Aug; 47(15):3864-3867. PubMed ID: 35913334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-sideband W-band photonic vector millimeter-wave signal generation by one single I/Q modulator.
    Li X; Xu Y; Yu J
    Opt Lett; 2016 Sep; 41(18):4162-5. PubMed ID: 27628347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach-Zehnder modulator.
    Qing T; Li S; Xue M; Li W; Zhu N; Pan S
    Opt Express; 2017 Mar; 25(5):4665-4671. PubMed ID: 28380737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.
    Lee SH; Kim HJ; Song JI
    Opt Express; 2014 Jan; 22(1):183-92. PubMed ID: 24514980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.