These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31259952)

  • 1. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics.
    Ye Z; Fülöp A; Helgason ÓB; Andrekson PA; Torres-Company V
    Opt Lett; 2019 Jul; 44(13):3326-3329. PubMed ID: 31259952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides.
    Krückel CJ; Fülöp A; Klintberg T; Bengtsson J; Andrekson PA; Torres-Company V
    Opt Express; 2015 Oct; 23(20):25827-37. PubMed ID: 26480096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing.
    Dizaji MR; Krückel CJ; Fülöp A; Andrekson PA; Torres-Company V; Chen LR
    Opt Express; 2017 May; 25(11):12100-12108. PubMed ID: 28786568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Q Si
    Ye Z; Twayana K; Andrekson PA; Torres-Company V
    Opt Express; 2019 Nov; 27(24):35719-35727. PubMed ID: 31878739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical bandgap engineering in nonlinear silicon nitride waveguides.
    Krückel CJ; Fülöp A; Ye Z; Andrekson PA; Torres-Company V
    Opt Express; 2017 Jun; 25(13):15370-15380. PubMed ID: 28788964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow-loss tightly confining Si
    El Dirani H; Youssef L; Petit-Etienne C; Kerdiles S; Grosse P; Monat C; Pargon E; Sciancalepore C
    Opt Express; 2019 Oct; 27(21):30726-30740. PubMed ID: 31684316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Si-rich Silicon Nitride for Nonlinear Signal Processing Applications.
    Lacava C; Stankovic S; Khokhar AZ; Bucio TD; Gardes FY; Reed GT; Richardson DJ; Petropoulos P
    Sci Rep; 2017 Feb; 7(1):22. PubMed ID: 28154419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the precursor gas ratio on dispersion engineering of broadband silicon nitride microresonator frequency combs.
    Moille G; Westly D; Simelgor G; Srinivasan K
    Opt Lett; 2021 Dec; 46(23):5970-5973. PubMed ID: 34851936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear silicon nitride waveguides based on a PECVD deposition platform.
    Wang L; Xie W; Van Thourhout D; Zhang Y; Yu H; Wang S
    Opt Express; 2018 Apr; 26(8):9645-9654. PubMed ID: 29715913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.
    Choi JW; Chen GF; Ng DK; Ooi KJ; Tan DT
    Sci Rep; 2016 Jun; 6():27120. PubMed ID: 27272558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits.
    Liu J; Huang G; Wang RN; He J; Raja AS; Liu T; Engelsen NJ; Kippenberg TJ
    Nat Commun; 2021 Apr; 12(1):2236. PubMed ID: 33863901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides.
    Ikeda K; Saperstein RE; Alic N; Fainman Y
    Opt Express; 2008 Aug; 16(17):12987-94. PubMed ID: 18711537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators.
    Kim S; Han K; Wang C; Jaramillo-Villegas JA; Xue X; Bao C; Xuan Y; Leaird DE; Weiner AM; Qi M
    Nat Commun; 2017 Aug; 8(1):372. PubMed ID: 28851874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photonics devices based on low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (Si
    Ng DKT; Gao H; Xing P; Chen GFR; Chia XX; Cao Y; Ong KYK; Tan DTH
    Sci Rep; 2022 Mar; 12(1):5267. PubMed ID: 35347190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation.
    Kordts A; Pfeiffer MH; Guo H; Brasch V; Kippenberg TJ
    Opt Lett; 2016 Feb; 41(3):452-5. PubMed ID: 26907395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anneal-free ultra-low loss silicon nitride integrated photonics.
    Bose D; Harrington MW; Isichenko A; Liu K; Wang J; Chauhan N; Newman ZL; Blumenthal DJ
    Light Sci Appl; 2024 Jul; 13(1):156. PubMed ID: 38977674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides.
    Ng DK; Wang Q; Wang T; Ng SK; Toh YT; Lim KP; Yang Y; Tan DT
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21884-9. PubMed ID: 26375453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved broadband dispersion engineering in coupled silicon nitride waveguides with a partially etched gap.
    Yao Z; Wan Y; Bu R; Zheng Z
    Appl Opt; 2019 Oct; 58(29):8007-8012. PubMed ID: 31674354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient coupling of crystalline microresonators to integrated photonic waveguides.
    Anderson M; Pavlov NG; Jost JD; Lihachev G; Liu J; Morais T; Zervas M; Gorodetsky ML; Kippenberg TJ
    Opt Lett; 2018 May; 43(9):2106-2109. PubMed ID: 29714757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.
    Li Q; Eftekhar AA; Sodagar M; Xia Z; Atabaki AH; Adibi A
    Opt Express; 2013 Jul; 21(15):18236-48. PubMed ID: 23938694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.