BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31260115)

  • 1. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: Influence of output energy delivery.
    Liu D; Brace CL
    Med Phys; 2019 Sep; 46(9):4127-4134. PubMed ID: 31260115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model.
    Bedoya M; del Rio AM; Chiang J; Brace CL
    Med Phys; 2014 Dec; 41(12):123301. PubMed ID: 25471983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue.
    Andreano A; Huang Y; Meloni MF; Lee FT; Brace C
    Med Phys; 2010 Jun; 37(6):2967-73. PubMed ID: 20632609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar strain analysis of liver undergoing microwave thermal ablation using x-ray CT.
    Weiss N; Goldberg SN; Nissenbaum Y; Sosna J; Azhari H
    Med Phys; 2015 Jan; 42(1):372-80. PubMed ID: 25563277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver.
    Andreano A; Brace CL
    Cardiovasc Intervent Radiol; 2013 Apr; 36(2):505-11. PubMed ID: 22572764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model.
    Brace CL; Hinshaw JL; Laeseke PF; Sampson LA; Lee FT
    Radiology; 2009 Jun; 251(3):705-11. PubMed ID: 19336667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiofrequency and microwave ablation in a porcine liver model: non-contrast CT and ultrasound radiologic-pathologic correlation.
    Ziemlewicz TJ; Hinshaw JL; Lubner MG; Knott EA; Willey BJ; Lee FT; Brace CL
    Int J Hyperthermia; 2020; 37(1):799-807. PubMed ID: 32620055
    [No Abstract]   [Full Text] [Related]  

  • 8. CT imaging during microwave ablation: analysis of spatial and temporal tissue contraction.
    Liu D; Brace CL
    Med Phys; 2014 Nov; 41(11):113303. PubMed ID: 25370671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.
    Lubner MG; Hinshaw JL; Andreano A; Sampson L; Lee FT; Brace CL
    J Vasc Interv Radiol; 2012 Mar; 23(3):405-11. PubMed ID: 22277272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.
    Laeseke PF; Lee FT; Sampson LA; van der Weide DW; Brace CL
    J Vasc Interv Radiol; 2009 Sep; 20(9):1224-9. PubMed ID: 19616970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung.
    Brace CL; Diaz TA; Hinshaw JL; Lee FT
    J Vasc Interv Radiol; 2010 Aug; 21(8):1280-6. PubMed ID: 20537559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model.
    Amabile C; Farina L; Lopresto V; Pinto R; Cassarino S; Tosoratti N; Goldberg SN; Cavagnaro M
    Int J Hyperthermia; 2017 Feb; 33(1):101-109. PubMed ID: 27439333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling.
    Clasen S; Schmidt D; Boss A; Dietz K; Kröber SM; Claussen CD; Pereira PL
    Radiology; 2006 Mar; 238(3):881-90. PubMed ID: 16424244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave ablation of the liver in a live porcine model: the impact of power, time and total energy on ablation zone size and shape.
    Hui TCH; Brace CL; Hinshaw JL; Quek LHH; Huang IKH; Kwan J; Lim GHT; Lee FT; Pua U
    Int J Hyperthermia; 2020; 37(1):668-676. PubMed ID: 32552123
    [No Abstract]   [Full Text] [Related]  

  • 15. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.
    Luyen H; Gao F; Hagness SC; Behdad N
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1702-10. PubMed ID: 24845280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction of Tissue Contraction after Microwave Ablation: A Comparative Experimental Study in
    Lee J; Rhim H; Lee MW; Kang TW; Song KD; Lee JK
    Korean J Radiol; 2022 Jan; 23(1):42-51. PubMed ID: 34983092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.
    Liu D; Brace CL
    Phys Med Biol; 2017 Mar; 62(6):2070-2086. PubMed ID: 28151729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of hydrochloric acid infusion radiofrequency ablation with microwave ablation in an ex vivo liver model.
    Deng H; Zhang T; Jiang X; Huang S; Jiang NN; Lau WY; Jinhua H
    Int J Hyperthermia; 2020; 37(1):600-607. PubMed ID: 32484363
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers.
    Yu J; Liang P; Yu X; Liu F; Chen L; Wang Y
    Eur J Radiol; 2011 Jul; 79(1):124-30. PubMed ID: 20047812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna--experimental and clinical studies.
    Kuang M; Lu MD; Xie XY; Xu HX; Mo LQ; Liu GJ; Xu ZF; Zheng YL; Liang JY
    Radiology; 2007 Mar; 242(3):914-24. PubMed ID: 17229876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.