These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31260119)

  • 1. More bang for your buck: Improved use of GPU nodes for GROMACS 2018.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2019 Oct; 40(27):2418-2431. PubMed ID: 31260119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2015 Oct; 36(26):1990-2008. PubMed ID: 26238484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GROMACS in the Cloud: A Global Supercomputer to Speed Up Alchemical Drug Design.
    Kutzner C; Kniep C; Cherian A; Nordstrom L; Grubmüller H; de Groot BL; Gapsys V
    J Chem Inf Model; 2022 Apr; 62(7):1691-1711. PubMed ID: 35353508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy.
    Kohnke B; Kutzner C; Grubmüller H
    J Chem Theory Comput; 2020 Nov; 16(11):6938-6949. PubMed ID: 33084336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDBenchmark: A toolkit to optimize the performance of molecular dynamics simulations.
    Gecht M; Siggel M; Linke M; Hummer G; Köfinger J
    J Chem Phys; 2020 Oct; 153(14):144105. PubMed ID: 33086826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS.
    Páll S; Zhmurov A; Bauer P; Abraham M; Lundborg M; Gray A; Hess B; Lindahl E
    J Chem Phys; 2020 Oct; 153(13):134110. PubMed ID: 33032406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
    Cui JY; Pratx G; Prevrhal S; Levin CS
    Med Phys; 2011 Dec; 38(12):6775-86. PubMed ID: 22149859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.
    Ruymgaart AP; Elber R
    J Chem Theory Comput; 2012 Nov; 8(11):4624-4636. PubMed ID: 23264758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU accelerated implementation of NCI calculations using promolecular density.
    Rubez G; Etancelin JM; Vigouroux X; Krajecki M; Boisson JC; Hénon E
    J Comput Chem; 2017 May; 38(14):1071-1083. PubMed ID: 28342203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field.
    Zhang X; Sundram S; Oppelstrup T; Kokkila-Schumacher SIL; Carpenter TS; Ingólfsson HI; Streitz FH; Lightstone FC; Glosli JN
    J Chem Phys; 2020 Jul; 153(4):045103. PubMed ID: 32752727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding up parallel GROMACS on high-latency networks.
    Kutzner C; van der Spoel D; Fechner M; Lindahl E; Schmitt UW; de Groot BL; Grubmüller H
    J Comput Chem; 2007 Sep; 28(12):2075-84. PubMed ID: 17405124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.
    Kobayashi C; Jung J; Matsunaga Y; Mori T; Ando T; Tamura K; Kamiya M; Sugita Y
    J Comput Chem; 2017 Sep; 38(25):2193-2206. PubMed ID: 28718930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware.
    Harvey MJ; De Fabritiis G
    J Chem Theory Comput; 2009 Sep; 5(9):2371-7. PubMed ID: 26616618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer.
    Peng S; Cui Y; Yang S; Su W; Zhang X; Zhang T; Liu W; Zhao X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):425-433. PubMed ID: 28641267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating epistasis analysis in human genetics with consumer graphics hardware.
    Sinnott-Armstrong NA; Greene CS; Cancare F; Moore JH
    BMC Res Notes; 2009 Jul; 2():149. PubMed ID: 19630950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massively parallel algorithm and implementation of RI-MP2 energy calculation for peta-scale many-core supercomputers.
    Katouda M; Naruse A; Hirano Y; Nakajima T
    J Comput Chem; 2016 Nov; 37(30):2623-2633. PubMed ID: 27634573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
    Mejía-Roa E; Tabas-Madrid D; Setoain J; García C; Tirado F; Pascual-Montano A
    BMC Bioinformatics; 2015 Feb; 16():43. PubMed ID: 25887585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.