These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31260123)

  • 1. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations.
    Vilela Oliveira D; Laun J; Peintinger MF; Bredow T
    J Comput Chem; 2019 Oct; 40(27):2364-2376. PubMed ID: 31260123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the fifth period for solid-state calculations.
    Laun J; Bredow T
    J Comput Chem; 2022 May; 43(12):839-846. PubMed ID: 35302265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence with polarization quality of the sixth period for solid-state calculations.
    Laun J; Bredow T
    J Comput Chem; 2021 Jun; 42(15):1064-1072. PubMed ID: 33792062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BSSE-corrected consistent Gaussian basis sets of triple-zeta valence quality of the lanthanides La-Lu for solid-state calculations.
    Seidler LM; Laun J; Bredow T
    J Comput Chem; 2023 Jun; 44(15):1418-1425. PubMed ID: 36905233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations.
    Laun J; Vilela Oliveira D; Bredow T
    J Comput Chem; 2018 Jul; 39(19):1285-1290. PubMed ID: 29468714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations.
    Peintinger MF; Oliveira DV; Bredow T
    J Comput Chem; 2013 Mar; 34(6):451-9. PubMed ID: 23115105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.
    Kruse H; Grimme S
    J Chem Phys; 2012 Apr; 136(15):154101. PubMed ID: 22519309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets.
    Inada Y; Orita H
    J Comput Chem; 2008 Jan; 29(2):225-32. PubMed ID: 17565500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.
    Brandenburg JG; Alessio M; Civalleri B; Peintinger MF; Bredow T; Grimme S
    J Phys Chem A; 2013 Sep; 117(38):9282-92. PubMed ID: 23947824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions.
    Brauer B; Kesharwani MK; Martin JM
    J Chem Theory Comput; 2014 Sep; 10(9):3791-9. PubMed ID: 26588524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate.
    Kurtén T; Sundberg MR; Vehkamäki H; Noppel M; Blomqvist J; Kulmala M
    J Phys Chem A; 2006 Jun; 110(22):7178-88. PubMed ID: 16737269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2011 Sep; 7(9):2766-79. PubMed ID: 26605468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On basis set superposition error corrected stabilization energies for large n-body clusters.
    Walczak K; Friedrich J; Dolg M
    J Chem Phys; 2011 Oct; 135(13):134118. PubMed ID: 21992293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communications: Is quantum chemical treatment of biopolymers accurate? Intramolecular basis set superposition error (BSSE).
    Balabin RM
    J Chem Phys; 2010 Jun; 132(23):231101. PubMed ID: 20572680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set.
    Müller M; Hansen A; Grimme S
    J Chem Phys; 2023 Jan; 158(1):014103. PubMed ID: 36610980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Methods for the Quantum Chemical Treatment of Protein Structures: The Effects of London-Dispersion and Basis-Set Incompleteness on Peptide and Water-Cluster Geometries.
    Goerigk L; Reimers JR
    J Chem Theory Comput; 2013 Jul; 9(7):3240-51. PubMed ID: 26583999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counterpoise correction is not useful for short and Van der Waals distances but may be useful at long range.
    Sheng XW; Mentel L; Gritsenko OV; Baerends EJ
    J Comput Chem; 2011 Oct; 32(13):2896-901. PubMed ID: 21735451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.