BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31260242)

  • 1. Superhydrophobic Polyurethane Foam Coated with Polysiloxane-Modified Clay Nanotubes for Efficient and Recyclable Oil Absorption.
    Wu F; Pickett K; Panchal A; Liu M; Lvov Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25445-25456. PubMed ID: 31260242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Superhydrophobic/Superoleophilic stearic acid and Polymer-modified magnetic polyurethane for Oil-Water Separation: Effect of polymeric nature.
    Satria M; Saleh TA
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):522-534. PubMed ID: 36174295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flame-retardant superhydrophobic coating derived from fly ash on polymeric foam for efficient oil/corrosive water and emulsion separation.
    Wang J; Wang H; Geng G
    J Colloid Interface Sci; 2018 Sep; 525():11-20. PubMed ID: 29679796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile preparation of melamine foam with superhydrophobic performance and its system integration with prototype equipment for the clean-up of oil spills on water surface.
    Mu L; Yue X; Hao B; Wang R; Ma PC
    Sci Total Environ; 2022 Aug; 833():155184. PubMed ID: 35417731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of an Oil Spill Collector Package by Using Polyurethane Foam Wrapped with Superhydrophobic ZnO Microrods/Carbon Cloth.
    Khosravi M; Azizian S
    Chempluschem; 2018 May; 83(5):455-462. PubMed ID: 31957363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation.
    Shayesteh H; Khosrowshahi MS; Mashhadimoslem H; Maleki F; Rabbani Y; Emrooz HBM
    Sci Rep; 2023 Mar; 13(1):4515. PubMed ID: 36934146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration.
    Piao J; Lu M; Ren J; Wang Y; Feng T; Wang Y; Jiao C; Chen X; Kuang S
    J Hazard Mater; 2023 Feb; 444(Pt A):130398. PubMed ID: 36402109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Superhydrophobic/Superoleophilic Bamboo Cellulose Foam for Oil/Water Separation.
    Liu CH; Shang JP; Su X; Zhao S; Peng Y; Li YB
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eco-friendly bamboo pulp foam enabled by chitosan and phytic acid interfacial assembly of halloysite nanotubes: Toward flame retardancy, thermal insulation, and sound absorption.
    Yu X; Jin X; He Y; Yu Z; Zhang R; Qin D
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129393. PubMed ID: 38218301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.
    Keshavarz A; Zilouei H; Abdolmaleki A; Asadinezhad A
    J Environ Manage; 2015 Jul; 157():279-86. PubMed ID: 25917559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification.
    Lu Y; Yuan W
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29167-29176. PubMed ID: 28796484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO
    Wu J; Ma X; Gnanasekar P; Wang F; Zhu J; Yan N; Chen J
    Sci Total Environ; 2023 Feb; 860():160276. PubMed ID: 36403829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clay-Filled Polyelectrolyte Complex Nanocoating for Flame-Retardant Polyurethane Foam.
    Palen B; Kolibaba TJ; Brehm JT; Shen R; Quan Y; Wang Q; Grunlan JC
    ACS Omega; 2021 Mar; 6(12):8016-8020. PubMed ID: 33817460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Amorphous Carbon Sphere-Based Superhydrophobic and Superoleophilic Sponges for Oil/Water Separation.
    Panickar R; Sobhan CB; Chakravorti S
    Langmuir; 2021 Oct; 37(42):12501-12511. PubMed ID: 34637316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of polysiloxane-modified polyurethane sponge as low-cost organics/water separation and selective absorption material.
    Cui Z; He W; Liu J; Wei W; Jiang L; Huang J; Lv X
    Water Sci Technol; 2016 Oct; 74(8):1936-1945. PubMed ID: 27789894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam.
    Lazar S; Carosio F; Davesne AL; Jimenez M; Bourbigot S; Grunlan J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31686-31696. PubMed ID: 30148595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic Thermoplastic Polyurethane Foam Fabricated by Phase Separation and Silica Coating for Oil-Water Separation.
    Wang X; Zhang J; Wang Y; Qin S; Pan Y; Tu Y; Liu X
    Macromol Rapid Commun; 2023 Oct; 44(20):e2300333. PubMed ID: 37573031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.
    Cao M; Luo X; Ren H; Feng J
    J Colloid Interface Sci; 2018 Feb; 512():567-574. PubMed ID: 29100161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery.
    Zhu H; Chen D; An W; Li N; Xu Q; Li H; He J; Lu J
    Small; 2015 Oct; 11(39):5222-9. PubMed ID: 26265103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterning of biologically derived surfaces with functional clay nanotubes.
    Liu M; Fakhrullin R; Stavitskaya A; Vinokurov V; Lama N; Lvov Y
    Sci Technol Adv Mater; 2024; 25(1):2327276. PubMed ID: 38532983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.