These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31260249)

  • 1. Identifying the Origin of the Limiting Process in a Double Perovskite PrBa
    Anjum U; Khan TS; Agarwal M; Haider MA
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25243-25253. PubMed ID: 31260249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling surface cation segregation in a nanostructured double perovskite GdBaCo
    Anjum U; Agarwal M; Khan TS; Prateek ; Gupta RK; Haider MA
    Nanoscale; 2019 Nov; 11(44):21404-21418. PubMed ID: 31674610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Validation of the Remarkably High Surface Oxygen Exchange Kinetics of PrBa
    Qian X; Haile SM
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13697-13705. PubMed ID: 38467397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Electrode PrBa
    Bai H; Zhang Y; Chu J; Zhou Q; Lan H; Zhou J
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38581-38591. PubMed ID: 37535454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse Atom Capture on Perovskite Surface Enabling Robust and Efficient Cathode for Protonic Ceramic Fuel Cells.
    Zhao S; Ma W; Wang W; Huang Y; Wang J; Wang S; Shu Z; He B; Zhao L
    Adv Mater; 2024 Jul; 36(27):e2405052. PubMed ID: 38652767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides.
    Zhu Y; He Z; Choi Y; Chen H; Li X; Zhao B; Yu Y; Zhang H; Stoerzinger KA; Feng Z; Chen Y; Liu M
    Nat Commun; 2020 Aug; 11(1):4299. PubMed ID: 32855418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites.
    Lee W; Han JW; Chen Y; Cai Z; Yildiz B
    J Am Chem Soc; 2013 May; 135(21):7909-25. PubMed ID: 23642000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High redox and performance stability of layered SmBa(0.5)Sr(0.5)Co(1.5)Cu(0.5)O(5+δ) perovskite cathodes for intermediate-temperature solid oxide fuel cells.
    Jun A; Shin J; Kim G
    Phys Chem Chem Phys; 2013 Dec; 15(45):19906-12. PubMed ID: 24150720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance, Thermal Cycling Stable, Coking-Tolerant Solid Oxide Fuel Cells with Nanostructured Electrodes.
    Zhang W; Zhou Y; Hussain AM; Song D; Miura Y; Chen Y; Luo Z; Kane N; Niu Y; Dale N; Fukuyama Y; Liu M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4993-4999. PubMed ID: 33492941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A perovskite oxide with a tunable pore-size derived from a general salt-template strategy as a highly efficient electrocatalyst for the oxygen evolution reaction.
    Yu H; Chu F; Zhou X; Ji J; Liu Y; Bu Y; Kong Y; Tao Y; Li Y; Qin Y
    Chem Commun (Camb); 2019 Feb; 55(17):2445-2448. PubMed ID: 30723848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution.
    Zhao B; Zhang L; Zhen D; Yoo S; Ding Y; Chen D; Chen Y; Zhang Q; Doyle B; Xiong X; Liu M
    Nat Commun; 2017 Feb; 8():14586. PubMed ID: 28240282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chemical Evolution of the La
    Opitz AK; Rameshan C; Kubicek M; Rupp GM; Nenning A; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J
    Top Catal; 2018; 61(20):2129-2141. PubMed ID: 30930590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Perovskite Structured Nd
    Zhao S; Huang L; Huang M; Lin WF; Wu Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59512-59523. PubMed ID: 38100658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Charged Defects at Perovskite Oxide Surfaces for Exceptionally Stable Solid Oxide Fuel Cell Electrodes.
    Choi M; Ibrahim IAM; Kim K; Koo JY; Kim SJ; Son JW; Han JW; Lee W
    ACS Appl Mater Interfaces; 2020 May; 12(19):21494-21504. PubMed ID: 32315147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3±δ).
    Huber AK; Falk M; Rohnke M; Luerssen B; Gregoratti L; Amati M; Janek J
    Phys Chem Chem Phys; 2012 Jan; 14(2):751-8. PubMed ID: 22116198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling surface cation segregation in a double perovskite for oxygen anion transport in high temperature energy conversion devices.
    Kala J; Anjum U; Mani BK; Haider MA
    Phys Chem Chem Phys; 2023 Aug; 25(33):22022-22031. PubMed ID: 37555332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Sr Content and Strain on Sr Surface Segregation of La
    Yu Y; Ludwig KF; Woicik JC; Gopalan S; Pal UB; Kaspar TC; Basu SN
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26704-26711. PubMed ID: 27649281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).
    Choi S; Yoo S; Kim J; Park S; Jun A; Sengodan S; Kim J; Shin J; Jeong HY; Choi Y; Kim G; Liu M
    Sci Rep; 2013; 3():2426. PubMed ID: 23945630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the Electrochemical Performance of Fe-Based Layered Double Perovskite Cathodes by Zn
    Ren R; Wang Z; Meng X; Xu C; Qiao J; Sun W; Sun K
    ACS Appl Mater Interfaces; 2020 May; 12(21):23959-23967. PubMed ID: 32352274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.
    Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y
    Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.