These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31260251)

  • 1. 3D-Printed Chemiresistive Sensor Array on Nanowire CuO/Cu
    Siebert L; Lupan O; Mirabelli M; Ababii N; Terasa MI; Kaps S; Cretu V; Vahl A; Faupel F; Adelung R
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25508-25515. PubMed ID: 31260251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single CuO/Cu
    Lupan O; Ababii N; Mishra AK; Gronenberg O; Vahl A; Schürmann U; Duppel V; Krüger H; Chow L; Kienle L; Faupel F; Adelung R; de Leeuw NH; Hansen S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42248-42263. PubMed ID: 32813500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Synthesis of CuO-Cu
    Zhu Y; Xu Z; Yan K; Zhao H; Zhang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40452-40460. PubMed ID: 29111634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO
    Lupan O; Santos-Carballal D; Ababii N; Magariu N; Hansen S; Vahl A; Zimoch L; Hoppe M; Pauporté T; Galstyan V; Sontea V; Chow L; Faupel F; Adelung R; de Leeuw NH; Comini E
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32363-32380. PubMed ID: 34223766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).
    Chirizzi D; Guascito MR; Filippo E; Tepore A
    Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Highly Efficient Cu
    Zhao F; Shi Y; Xu L; Chen M; Xue Y; Wu CE; Qiu J; Cheng G; Xu J; Hu X
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance.
    Hou L; Zhang C; Li L; Du C; Li X; Kang XF; Chen W
    Talanta; 2018 Oct; 188():41-49. PubMed ID: 30029395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precursor to Gas Sensor: A Detailed Study of the Suitability of Copper Complexes as an MOCVD Precursor and their Application in Gas Sensing.
    Singh V; Sinha J; Nanda A; Shivashankar SA; Bhat N; Avasthi S
    Inorg Chem; 2021 Nov; 60(22):17141-17150. PubMed ID: 34699217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors.
    Lupan O; Postica V; Wolff N; Su J; Labat F; Ciofini I; Cavers H; Adelung R; Polonskyi O; Faupel F; Kienle L; Viana B; Pauporté T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32115-32126. PubMed ID: 31385698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of CuO and Cu2O nanoparticles in a thick polyimide film by post heat treatment in a controlled-atmosphere.
    Yoon J; Choi DJ; Kim YH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):796-800. PubMed ID: 21446548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect Phase Transformation of CuO to Cu2O on a Nanowire Surface.
    Wu F; Banerjee S; Li H; Myung Y; Banerjee P
    Langmuir; 2016 May; 32(18):4485-93. PubMed ID: 27093222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Thresholds in CuO Nanowires: Investigation of Growth from Microstructured Thin Films for Gas Sensing.
    Maier C; Leitgeb V; Egger L; Köck A
    Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembly of Cu
    Xu Z; Luo Y; Duan G
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8164-8174. PubMed ID: 30633864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal organic frameworks-assisted fabrication of CuO/Cu
    Wang Q; Xu H; Huang W; Pan Z; Zhou H
    J Hazard Mater; 2019 Feb; 364():499-508. PubMed ID: 30388633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Nucleation Preference at CuO Defects Rather Than Cu
    Sun X; Su Z; Zhang J; Liu X; Li Y; Yu F; Cheng X; Zhao X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43156-43165. PubMed ID: 30396269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of novel BiVO
    Bai S; Li Q; Han N; Zhang K; Tang P; Feng Y; Luo R; Li D; Chen A
    J Colloid Interface Sci; 2020 May; 567():37-44. PubMed ID: 32035392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and Thermal Conductivities of Single Cu
    De Carlo I; Baudino L; Klapetek P; Serrapede M; Michieletti F; De Leo N; Pirri F; Boarino L; Lamberti A; Milano G
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation.
    Kargar A; Jing Y; Kim SJ; Riley CT; Pan X; Wang D
    ACS Nano; 2013 Dec; 7(12):11112-20. PubMed ID: 24205982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a high-performance H
    Li Z; Wang X; Yao Y; Xin J; Xie L; Han Y; Zhu Z
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38295405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.