These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31260274)

  • 1. Raman Spectroscopic Detection in Continuous Microflow Using a Chip-Integrated Silver Electrode as an Electrically Regenerable Surface-Enhanced Raman Spectroscopy Substrate.
    Höhn EM; Panneerselvam R; Das A; Belder D
    Anal Chem; 2019 Aug; 91(15):9844-9851. PubMed ID: 31260274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast electrically assisted regeneration of on-chip SERS substrates.
    Meier TA; Poehler E; Kemper F; Pabst O; Jahnke HG; Beckert E; Robitzki A; Belder D
    Lab Chip; 2015 Jul; 15(14):2923-7. PubMed ID: 26040796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics.
    Su X; Xu Y; Zhao H; Li S; Chen L
    Talanta; 2019 Mar; 194():903-909. PubMed ID: 30609623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips.
    Taylor LC; Kirchner TB; Lavrik NV; Sepaniak MJ
    Analyst; 2012 Feb; 137(4):1005-12. PubMed ID: 22193421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing.
    Habermehl A; Strobel N; Eckstein R; Bolse N; Mertens A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions.
    Yan S; Chu F; Zhang H; Yuan Y; Huang Y; Liu A; Wang S; Li W; Li S; Wen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117113. PubMed ID: 31141779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.
    Tong L; Righini M; Gonzalez MU; Quidant R; Käll M
    Lab Chip; 2009 Jan; 9(2):193-5. PubMed ID: 19107272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection.
    Bailey MR; Pentecost AM; Selimovic A; Martin RS; Schultz ZD
    Anal Chem; 2015 Apr; 87(8):4347-55. PubMed ID: 25815795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ laser-induced photochemical silver substrate synthesis and sequential SERS detection in a flow cell.
    Herman K; Szabó L; Leopold LF; Chiş V; Leopold N
    Anal Bioanal Chem; 2011 May; 400(3):815-20. PubMed ID: 21359570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels.
    Xu BB; Ma ZC; Wang L; Zhang R; Niu LG; Yang Z; Zhang YL; Zheng WH; Zhao B; Xu Y; Chen QD; Xia H; Sun HB
    Lab Chip; 2011 Oct; 11(19):3347-51. PubMed ID: 21863148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photovoltaic cells as a highly efficient system for biomedical and electrochemical surface-enhanced Raman spectroscopy analysis.
    Niciński K; Witkowska E; Korsak D; Noworyta K; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    RSC Adv; 2019 Jan; 9(2):576-591. PubMed ID: 35517626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis.
    Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK
    Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative SERS studies by combining LOC-SERS with the standard addition method.
    Kämmer E; Olschewski K; Stöckel S; Rösch P; Weber K; Cialla-May D; Bocklitz T; Popp J
    Anal Bioanal Chem; 2015 Nov; 407(29):8925-9. PubMed ID: 26396080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.
    Wang S; Liu C; Wang H; Chen G; Cong M; Song W; Jia Q; Xu S; Xu W
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11706-13. PubMed ID: 24978908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.