These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31260692)

  • 1. Repurposing an Ancient Protein Core Structure: Structural Studies on FmtA, a Novel Esterase of Staphylococcus aureus.
    Dalal V; Kumar P; Rakhaminov G; Qamar A; Fan X; Hunter H; Tomar S; Golemi-Kotra D; Kumar P
    J Mol Biol; 2019 Aug; 431(17):3107-3123. PubMed ID: 31260692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Staphylococcus aureus Methicillin Resistance Factor FmtA Is a d-Amino Esterase That Acts on Teichoic Acids.
    Rahman MM; Hunter HN; Prova S; Verma V; Qamar A; Golemi-Kotra D
    mBio; 2016 Feb; 7(1):e02070-15. PubMed ID: 26861022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Mechanics/Molecular Mechanics Studies on the Catalytic Mechanism of a Novel Esterase (FmtA) of
    Dalal V; Golemi-Kotra D; Kumar P
    J Chem Inf Model; 2022 May; 62(10):2409-2420. PubMed ID: 35475370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Based Identification of Potential Drugs Against FmtA of Staphylococcus aureus: Virtual Screening, Molecular Dynamics, MM-GBSA, and QM/MM.
    Dalal V; Dhankhar P; Singh V; Singh V; Rakhaminov G; Golemi-Kotra D; Kumar P
    Protein J; 2021 Apr; 40(2):148-165. PubMed ID: 33421024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of penicillin-binding proteins. Resistance factor FmtA of Staphylococcus aureus.
    Fan X; Liu Y; Smith D; Konermann L; Siu KW; Golemi-Kotra D
    J Biol Chem; 2007 Nov; 282(48):35143-52. PubMed ID: 17925392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual roles of FmtA in Staphylococcus aureus cell wall biosynthesis and autolysis.
    Qamar A; Golemi-Kotra D
    Antimicrob Agents Chemother; 2012 Jul; 56(7):3797-805. PubMed ID: 22564846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staphylococcus aureus methicillin-resistance factor fmtA is regulated by the global regulator SarA.
    Zhao Y; Verma V; Belcheva A; Singh A; Fridman M; Golemi-Kotra D
    PLoS One; 2012; 7(8):e43998. PubMed ID: 22952845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and kinetic analysis of the monofunctional Staphylococcus aureus PBP1.
    Bon CG; Grigg JC; Lee J; Robb CS; Caveney NA; Eltis LD; Strynadka NCJ
    J Struct Biol; 2024 Jun; 216(2):108086. PubMed ID: 38527711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid.
    KoƧ C; Gerlach D; Beck S; Peschel A; Xia G; Stehle T
    J Biol Chem; 2015 Apr; 290(15):9874-85. PubMed ID: 25697358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping of an acyl-enzyme intermediate in a penicillin-binding protein (PBP)-catalyzed reaction.
    Macheboeuf P; Lemaire D; Teller N; Martins Ados S; Luxen A; Dideberg O; Jamin M; Dessen A
    J Mol Biol; 2008 Feb; 376(2):405-13. PubMed ID: 18155726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysine N(zeta)-decarboxylation in the BlaR1 protein from Staphylococcus aureus at the root of its function as an antibiotic sensor.
    Cha J; Mobashery S
    J Am Chem Soc; 2007 Apr; 129(13):3834-5. PubMed ID: 17343387
    [No Abstract]   [Full Text] [Related]  

  • 12. X-ray crystal structure of the acylated beta-lactam sensor domain of BlaR1 from Staphylococcus aureus and the mechanism of receptor activation for signal transduction.
    Birck C; Cha JY; Cross J; Schulze-Briese C; Meroueh SO; Schlegel HB; Mobashery S; Samama JP
    J Am Chem Soc; 2004 Nov; 126(43):13945-7. PubMed ID: 15506754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis.
    Fedarovich A; Nicholas RA; Davies C
    J Mol Biol; 2010 Apr; 398(1):54-65. PubMed ID: 20206184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic analysis of
    Li FKK; Rosell FI; Gale RT; Simorre JP; Brown ED; Strynadka NCJ
    J Biol Chem; 2020 Feb; 295(9):2629-2639. PubMed ID: 31969390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis.
    Mahasenan KV; Molina R; Bouley R; Batuecas MT; Fisher JF; Hermoso JA; Chang M; Mobashery S
    J Am Chem Soc; 2017 Feb; 139(5):2102-2110. PubMed ID: 28099001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation.
    Nicola G; Peddi S; Stefanova M; Nicholas RA; Gutheil WG; Davies C
    Biochemistry; 2005 Jun; 44(23):8207-17. PubMed ID: 15938610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unconventional Antibacterials and Adjuvants.
    Chang M; Mahasenan KV; Hermoso JA; Mobashery S
    Acc Chem Res; 2021 Feb; 54(4):917-929. PubMed ID: 33512995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization and molecular docking analysis of novel esterases from Sphingobium chungbukense DJ77.
    Shin WR; Um HJ; Kim YC; Kim SC; Cho BK; Ahn JY; Min J; Kim YH
    Int J Biol Macromol; 2021 Jan; 168():403-411. PubMed ID: 33321136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.