BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31260699)

  • 1. The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells.
    Agarwal V; Naskar P; Agasti S; Khurana GK; Vishwakarma P; Lynn AM; Roche PA; Puri N
    Biochim Biophys Acta Mol Cell Res; 2019 Oct; 1866(10):1618-1633. PubMed ID: 31260699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis.
    Puri N; Roche PA
    Traffic; 2006 Nov; 7(11):1482-94. PubMed ID: 16984405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of SNAP-23 regulates exocytosis from mast cells.
    Hepp R; Puri N; Hohenstein AC; Crawford GL; Whiteheart SW; Roche PA
    J Biol Chem; 2005 Feb; 280(8):6610-20. PubMed ID: 15611044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells.
    Gonelle-Gispert C; Molinete M; Halban PA; Sadoul K
    J Cell Sci; 2000 Sep; 113 ( Pt 18)():3197-205. PubMed ID: 10954418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mast cell degranulation requires N-ethylmaleimide-sensitive factor-mediated SNARE disassembly.
    Puri N; Kruhlak MJ; Whiteheart SW; Roche PA
    J Immunol; 2003 Nov; 171(10):5345-52. PubMed ID: 14607937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking dephosphorylation at Serine 120 residue in t-SNARE SNAP-23 leads to massive inhibition in exocytosis from mast cells.
    Naskar P; Naqvi N; Puri N
    J Biosci; 2018 Mar; 43(1):127-138. PubMed ID: 29485121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting.
    Washbourne P; Cansino V; Mathews JR; Graham M; Burgoyne RD; Wilson MC
    Biochem J; 2001 Aug; 357(Pt 3):625-34. PubMed ID: 11463334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrophobic cysteine-rich domain of SNAP25 couples with downstream residues to mediate membrane interactions and recognition by DHHC palmitoyl transferases.
    Greaves J; Prescott GR; Fukata Y; Fukata M; Salaun C; Chamberlain LH
    Mol Biol Cell; 2009 Mar; 20(6):1845-54. PubMed ID: 19158383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptotagmin regulates mast cell functions.
    Baram D; Mekori YA; Sagi-Eisenberg R
    Immunol Rev; 2001 Feb; 179():25-34. PubMed ID: 11292024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis.
    Naskar P; Puri N
    Biol Open; 2017 Sep; 6(9):1257-1269. PubMed ID: 28784843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The last exon of SNAP-23 regulates granule exocytosis from mast cells.
    Vaidyanathan VV; Puri N; Roche PA
    J Biol Chem; 2001 Jul; 276(27):25101-6. PubMed ID: 11350976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells. Regulation by distinct cysteine-rich domains.
    Salaün C; Gould GW; Chamberlain LH
    J Biol Chem; 2005 Jan; 280(2):1236-40. PubMed ID: 15542596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the palmitoylation domain of SNAP-25.
    Lane SR; Liu Y
    J Neurochem; 1997 Nov; 69(5):1864-9. PubMed ID: 9349529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells.
    Tsuboi T; Fukuda M
    J Biol Chem; 2005 Nov; 280(47):39253-9. PubMed ID: 16203731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palmitoylated peptides from the cysteine-rich domain of SNAP-23 cause membrane fusion depending on peptide length, position of cysteines, and extent of palmitoylation.
    Pallavi B; Nagaraj R
    J Biol Chem; 2003 Apr; 278(15):12737-44. PubMed ID: 12551899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis.
    Chin LS; Nugent RD; Raynor MC; Vavalle JP; Li L
    J Biol Chem; 2000 Jan; 275(2):1191-200. PubMed ID: 10625663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases.
    Greaves J; Gorleku OA; Salaun C; Chamberlain LH
    J Biol Chem; 2010 Aug; 285(32):24629-38. PubMed ID: 20519516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palmitoylation of luteinizing hormone/human choriogonadotropin receptors in transfected cells. Abolition of palmitoylation by mutation of Cys-621 and Cys-622 residues in the cytoplasmic tail increases ligand-induced internalization of the receptor.
    Kawate N; Menon KM
    J Biol Chem; 1994 Dec; 269(48):30651-8. PubMed ID: 7982985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23.
    Huang X; Sheu L; Tamori Y; Trimble WS; Gaisano HY
    Pancreas; 2001 Aug; 23(2):125-33. PubMed ID: 11484914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.