These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 31260703)
1. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. McBurney-Lin J; Lu J; Zuo Y; Yang H Neurosci Biobehav Rev; 2019 Oct; 105():190-199. PubMed ID: 31260703 [TBL] [Abstract][Full Text] [Related]
2. The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Waterhouse BD; Navarra RL Brain Res; 2019 Apr; 1709():1-15. PubMed ID: 30179606 [TBL] [Abstract][Full Text] [Related]
3. Corticotropin-releasing factor acting at the locus coeruleus disrupts thalamic and cortical sensory-evoked responses. Devilbiss DM; Waterhouse BD; Berridge CW; Valentino R Neuropsychopharmacology; 2012 Aug; 37(9):2020-30. PubMed ID: 22510725 [TBL] [Abstract][Full Text] [Related]
4. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. Neves RM; van Keulen S; Yang M; Logothetis NK; Eschenko O J Neurophysiol; 2018 Mar; 119(3):904-920. PubMed ID: 29093170 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons. Fukabori R; Iguchi Y; Kato S; Takahashi K; Eifuku S; Tsuji S; Hazama A; Uchigashima M; Watanabe M; Mizuma H; Cui Y; Onoe H; Hikishima K; Yasoshima Y; Osanai M; Inagaki R; Fukunaga K; Nishijo T; Momiyama T; Benton R; Kobayashi K J Neurosci; 2020 Oct; 40(43):8367-8385. PubMed ID: 32994339 [TBL] [Abstract][Full Text] [Related]
6. New developments and future directions in understanding locus coeruleus - Norepinephrine (LC-NE) function. Foote SL; Berridge CW Brain Res; 2019 Apr; 1709():81-84. PubMed ID: 30267649 [TBL] [Abstract][Full Text] [Related]
7. Organization of the locus coeruleus-norepinephrine system. Schwarz LA; Luo L Curr Biol; 2015 Nov; 25(21):R1051-R1056. PubMed ID: 26528750 [TBL] [Abstract][Full Text] [Related]
8. Amygdalar Gating of Early Sensory Processing through Interactions with Locus Coeruleus. Fast CD; McGann JP J Neurosci; 2017 Mar; 37(11):3085-3101. PubMed ID: 28188216 [TBL] [Abstract][Full Text] [Related]
9. Consequences of tuning network function by tonic and phasic locus coeruleus output and stress: Regulating detection and discrimination of peripheral stimuli. Devilbiss DM Brain Res; 2019 Apr; 1709():16-27. PubMed ID: 29908165 [TBL] [Abstract][Full Text] [Related]
10. Impulse conduction properties of noradrenergic locus coeruleus axons projecting to monkey cerebrocortex. Aston-Jones G; Foote SL; Segal M Neuroscience; 1985 Jul; 15(3):765-77. PubMed ID: 4069354 [TBL] [Abstract][Full Text] [Related]
11. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Bekar LK; He W; Nedergaard M Cereb Cortex; 2008 Dec; 18(12):2789-95. PubMed ID: 18372288 [TBL] [Abstract][Full Text] [Related]
12. Changes in the electrical activity of locus coeruleus neurons in pregnant rats. Nakamura S; Sakaguchi T; Shirokawa T; Yamatodani A; Maeyama K; Wada H Neurosci Lett; 1988 Mar; 85(3):329-32. PubMed ID: 3362422 [TBL] [Abstract][Full Text] [Related]
13. Stress, antidepressant drugs, and the locus coeruleus. Brady LS Brain Res Bull; 1994; 35(5-6):545-56. PubMed ID: 7859112 [TBL] [Abstract][Full Text] [Related]
14. Locus coeruleus neurons in the neonatal rat: electrical activity and responses to sensory stimulation. Kimura F; Nakamura S Brain Res; 1985 Dec; 355(2):301-5. PubMed ID: 4084787 [TBL] [Abstract][Full Text] [Related]
15. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. Aston-Jones G; Cohen JD J Comp Neurol; 2005 Dec; 493(1):99-110. PubMed ID: 16254995 [TBL] [Abstract][Full Text] [Related]
16. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. Feinstein DL; Kalinin S; Braun D J Neurochem; 2016 Oct; 139 Suppl 2():154-178. PubMed ID: 26968403 [TBL] [Abstract][Full Text] [Related]
17. Amyloid beta peptides, locus coeruleus-norepinephrine system and dense core vesicles. Ross JA; Reyes BAS; Van Bockstaele EJ Brain Res; 2019 Jan; 1702():46-53. PubMed ID: 29577889 [TBL] [Abstract][Full Text] [Related]
18. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Hayat H; Regev N; Matosevich N; Sales A; Paredes-Rodriguez E; Krom AJ; Bergman L; Li Y; Lavigne M; Kremer EJ; Yizhar O; Pickering AE; Nir Y Sci Adv; 2020 Apr; 6(15):eaaz4232. PubMed ID: 32285002 [TBL] [Abstract][Full Text] [Related]
19. The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. Devilbiss DM; Waterhouse BD J Neurosci; 2004 Dec; 24(48):10773-85. PubMed ID: 15574728 [TBL] [Abstract][Full Text] [Related]
20. Locus Coeruleus-Norepinephrine System: Spheres of Influence and Contribution to the Development of Neurodegenerative Diseases. Nikolenko VN; Borminskaya ID; Nikitina AT; Golyshkina MS; Rizaeva NA; Oganesyan MV Front Biosci (Landmark Ed); 2024 Mar; 29(3):118. PubMed ID: 38538284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]