These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 31260847)
1. Unexpectedly Smaller Artifacts of 3.0-T Magnetic Resonance Imaging than 1.5 T: Recommendation of 3.0-T Scanners for Patients with Magnet-Resistant Adjustable Ventriculoperitoneal Shunt Devices. Amano Y; Kuroda N; Uchida D; Sakakura Y; Nakatogawa H; Ando N; Nakayama T; Sato H; Masui T; Sameshima T; Tanaka T World Neurosurg; 2019 Oct; 130():e393-e399. PubMed ID: 31260847 [TBL] [Abstract][Full Text] [Related]
2. Setting pressure can change the size and shape of MRI artifacts caused by adjustable shunt valves: a study of the 4 newest models. Uchida D; Amano Y; Nakatogawa H; Masui T; Ando N; Nakayama T; Sato H; Sameshima T; Tanaka T J Neurosurg; 2019 Apr; 130(4):1260-1267. PubMed ID: 29775146 [TBL] [Abstract][Full Text] [Related]
3. Magnetic field interactions in adjustable hydrocephalus shunts. Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607 [TBL] [Abstract][Full Text] [Related]
4. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve. Ortler M; Kostron H; Felber S Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264 [TBL] [Abstract][Full Text] [Related]
5. Spinal magnetic resonance imaging artifacts in lumboperitoneal shunt surgery using adjustable valve implantation on the paravertebral spinal muscles. Tanaka T; Sashida R; Hirokawa Y; Wakamiya T; Michiwaki Y; Shimoji K; Suehiro E; Onoda K; Yamane F; Matsuno A; Morimoto T J Med Invest; 2024; 71(1.2):154-157. PubMed ID: 38735712 [TBL] [Abstract][Full Text] [Related]
6. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices. Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954 [TBL] [Abstract][Full Text] [Related]
7. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves. Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091 [TBL] [Abstract][Full Text] [Related]
10. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study. Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939 [TBL] [Abstract][Full Text] [Related]
11. Field strength difference in extent of artifacts induced by CERTAS Plus valves in patients with idiopathic normal pressure hydrocephalus. Camerucci E; Elder BD; Shu Y; Messina SA; Gunter JL; Graff-Radford J; Jones DT; Botha H; Cutsforth-Gregory JK; Jack CR; Huston J; Cogswell PM Neuroradiol J; 2023 Dec; 36(6):665-673. PubMed ID: 37118867 [TBL] [Abstract][Full Text] [Related]
12. Magnetic Resonance Imaging Artifact Associated With Transcutaneous Bone Conduction Implants: Cholesteatoma and Vestibular Schwannoma Surveillance. Nassiri AM; Messina SA; Benson JC; Lane JI; McGee KP; Trzasko JD; Carlson ML Otolaryngol Head Neck Surg; 2024 Jan; 170(1):187-194. PubMed ID: 37582349 [TBL] [Abstract][Full Text] [Related]
13. Inter-scanner reproducibility of brain volumetry: influence of automated brain segmentation software. Liu S; Hou B; Zhang Y; Lin T; Fan X; You H; Feng F BMC Neurosci; 2020 Sep; 21(1):35. PubMed ID: 32887546 [TBL] [Abstract][Full Text] [Related]
14. Assessing the Accuracy and Reproducibility of PARIETAL: A Deep Learning Brain Extraction Algorithm. Valverde S; Coll L; Valencia L; Clèrigues A; Oliver A; Vilanova JC; Ramió-Torrentà L; Rovira À; Lladó X J Magn Reson Imaging; 2024 Jun; 59(6):1991-2000. PubMed ID: 34137113 [TBL] [Abstract][Full Text] [Related]
15. Prosepective Study to Evaluate Rate and Frequency of Perturbations of Implanted Programmable Hakim Codman Valve After 1.5-Tesla Magnetic Resonance Imaging. Capitanio JF; Venier A; Mazzeo LA; Barzaghi LR; Acerno S; Mortini P World Neurosurg; 2016 Apr; 88():297-299. PubMed ID: 26455768 [TBL] [Abstract][Full Text] [Related]
16. Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements. Lee H; Nakamura K; Narayanan S; Brown RA; Arnold DL; Neuroimage; 2019 Jan; 184():555-565. PubMed ID: 30253207 [TBL] [Abstract][Full Text] [Related]
17. MR angiography artifact due to metal joint of ventriculoperitoneal shunt mimicking severe carotid stenosis. Kuta AJ; Smoker WR; Cole TJ; Beskin RR J Magn Reson Imaging; 1995; 5(1):125-6. PubMed ID: 7696803 [TBL] [Abstract][Full Text] [Related]
18. Apparent diffusion coefficient reproducibility of the pancreas measured at different MR scanners using diffusion-weighted imaging. Ye XH; Gao JY; Yang ZH; Liu Y J Magn Reson Imaging; 2014 Dec; 40(6):1375-81. PubMed ID: 24222019 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of a miniature intracranial pressure monitor, its function during magnetic resonance scanning, and assessment of image artifact generation. Macmillan CS; Wild JM; Andrews PJ; Marshall I; Armitage PA; Wardlaw JM; Easton VJ; Cannon J Neurosurgery; 1999 Jul; 45(1):188-92; discussion 192-3. PubMed ID: 10414586 [TBL] [Abstract][Full Text] [Related]
20. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Schmidt GP; Wintersperger B; Graser A; Baur-Melnyk A; Reiser MF; Schoenberg SO Invest Radiol; 2007 Jun; 42(6):449-59. PubMed ID: 17507818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]