These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31260935)

  • 1. Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28.
    Qu W; Zhang C; Zhang Y; Ho SH
    Bioresour Technol; 2019 Oct; 289():121702. PubMed ID: 31260935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.
    Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS
    Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production.
    Aketo T; Hoshikawa Y; Nojima D; Yabu Y; Maeda Y; Yoshino T; Takano H; Tanaka T
    J Biosci Bioeng; 2020 May; 129(5):565-572. PubMed ID: 31974048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal post-treatment of anaerobically digested agro-industrial wastes for nutrient removal and lipids production.
    Koutra E; Grammatikopoulos G; Kornaros M
    Bioresour Technol; 2017 Jan; 224():473-480. PubMed ID: 27866801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of Parachlorella kessleri cultivation on brewery wastewater.
    O'Rourke R; Gaffney M; Murphy R
    Water Sci Technol; 2016; 73(6):1401-8. PubMed ID: 27003082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production.
    Wang Y; Ho SH; Cheng CL; Nagarajan D; Guo WQ; Lin C; Li S; Ren N; Chang JS
    Bioresour Technol; 2017 Oct; 242():7-14. PubMed ID: 28377203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production.
    Qu W; Loke Show P; Hasunuma T; Ho SH
    Bioresour Technol; 2020 Jun; 305():123072. PubMed ID: 32163881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attached cultivation of microalgae on rational carriers for swine wastewater treatment and biomass harvesting.
    Zhao G; Wang X; Hong Y; Liu X; Wang Q; Zhai Q; Zhang H
    Bioresour Technol; 2022 May; 351():127014. PubMed ID: 35307525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.
    Lee YR; Chen JJ
    Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonium nitrogen removal in batch cultures treating digested piggery wastewater with microalgae Oedogonium sp.
    Wang H; Hu Z; Xiao B; Cheng Q; Li F
    Water Sci Technol; 2013; 68(2):269-75. PubMed ID: 23863416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of biohydrogen production by protonophores in novel green microalgae Parachlorella kessleri.
    Manoyan J; Gabrielyan L; Kozel N; Trchounian A
    J Photochem Photobiol B; 2019 Oct; 199():111597. PubMed ID: 31450130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage.
    Wen Y; He Y; Ji X; Li S; Chen L; Zhou Y; Wang M; Chen B
    Bioresour Technol; 2017 Nov; 243():247-253. PubMed ID: 28672187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri.
    Zhang R; Grimi N; Marchal L; Vorobiev E
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):29-36. PubMed ID: 30229328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae.
    Wang M; Yang Y; Chen Z; Chen Y; Wen Y; Chen B
    Bioresour Technol; 2016 Dec; 222():130-138. PubMed ID: 27718397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation.
    Ramsundar P; Guldhe A; Singh P; Bux F
    Bioresour Technol; 2017 Mar; 227():82-92. PubMed ID: 28013140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient removal efficiency and physiological responses of Desmodesmus communis at different HRTs and nutrient stress condition using different sources of urban wastewater effluents.
    Samorì G; Samorì C; Pistocchi R
    Appl Biochem Biotechnol; 2014 May; 173(1):74-89. PubMed ID: 24622847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of light-dependent hydrogen production by new green microalga Parachlorella kessleri in various conditions.
    Gabrielyan L; Hakobyan L; Trchounian A
    J Photochem Photobiol B; 2017 Oct; 175():207-210. PubMed ID: 28910700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri.
    Fernandes B; Teixeira J; Dragone G; Vicente AA; Kawano S; Bišová K; Přibyl P; Zachleder V; Vítová M
    Bioresour Technol; 2013 Sep; 144():268-74. PubMed ID: 23876655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Sep; 61():130-40. PubMed ID: 24911561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal.
    Ren HY; Liu BF; Kong F; Zhao L; Ren N
    Water Res; 2015 Nov; 85():404-12. PubMed ID: 26364224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.