These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 31260939)
1. Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology. Zhang T; Hu L; Zhang M; Jiang M; Fiedler H; Bai W; Wang X; Zhang D; Li Z Environ Pollut; 2019 Sep; 252(Pt B):1399-1405. PubMed ID: 31260939 [TBL] [Abstract][Full Text] [Related]
2. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. Guan CY; Tseng YH; Tsang DCW; Hu A; Yu CP J Hazard Mater; 2019 Mar; 365():137-145. PubMed ID: 30419460 [TBL] [Abstract][Full Text] [Related]
3. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production. Mu C; Wang L; Wang L Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles. Wang T; Qian T; Huo L; Li Y; Zhao D Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830 [TBL] [Abstract][Full Text] [Related]
5. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. Song TS; Jin Y; Bao J; Kang D; Xie J J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274 [TBL] [Abstract][Full Text] [Related]
6. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. Beretta G; Sangalli M; Sezenna E; Tofalos AE; Franzetti A; Saponaro S Integr Environ Assess Manag; 2024 Nov; 20(6):2033-2049. PubMed ID: 38953765 [TBL] [Abstract][Full Text] [Related]
7. Enhanced bioelectroremediation of heavy metal contaminated groundwater through advancing a self-standing cathode. Ali J; Zheng C; Lyu T; Oladoja NA; Lu Y; An W; Yang Y Water Res; 2024 Jun; 256():121625. PubMed ID: 38640565 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Huang L; Chen J; Quan X; Yang F Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142 [TBL] [Abstract][Full Text] [Related]
9. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness. Liu Y; Mou H; Chen L; Mirza ZA; Liu L J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959 [TBL] [Abstract][Full Text] [Related]
10. Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Habibul N; Hu Y; Wang YK; Chen W; Yu HQ; Sheng GP Environ Sci Technol; 2016 Apr; 50(7):3882-9. PubMed ID: 26962848 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co Cheng C; Hu Y; Shao S; Yu J; Zhou W; Cheng J; Chen Y; Chen S; Chen J; Zhang L Environ Pollut; 2019 Apr; 247():647-657. PubMed ID: 30711820 [TBL] [Abstract][Full Text] [Related]
12. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. Wang T; Liu Y; Wang J; Wang X; Liu B; Wang Y J Environ Manage; 2019 Feb; 231():679-686. PubMed ID: 30391712 [TBL] [Abstract][Full Text] [Related]
13. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Guan CY; Hu A; Yu CP Sci Total Environ; 2019 Jun; 670():585-594. PubMed ID: 30909036 [TBL] [Abstract][Full Text] [Related]
14. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell. Zhang X; Liu Y; Li C Environ Sci Pollut Res Int; 2021 Oct; 28(38):54170-54176. PubMed ID: 34405326 [TBL] [Abstract][Full Text] [Related]
15. Synergistic remediation of Cr(VI) contaminated soil by iron-loaded activated carbon in two-chamber microbial fuel cells. Wang H; Liu J; Gui C; Yan Q; Wang L; Wang S; Li J Environ Res; 2022 May; 208():112707. PubMed ID: 35007538 [TBL] [Abstract][Full Text] [Related]
16. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Kazakis N; Kantiranis N; Kalaitzidou K; Kaprara E; Mitrakas M; Frei R; Vargemezis G; Vogiatzis D; Zouboulis A; Filippidis A Environ Pollut; 2018 Apr; 235():632-641. PubMed ID: 29331896 [TBL] [Abstract][Full Text] [Related]
17. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination. Wang GH; Cheng CY; Liu MH; Chen TY; Hsieh MC; Chung YC Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537887 [TBL] [Abstract][Full Text] [Related]
18. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil. Tang SC; Yin K; Lo IM J Contam Hydrol; 2011 Jul; 125(1-4):39-46. PubMed ID: 21601936 [TBL] [Abstract][Full Text] [Related]
19. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell. Gangadharan P; Nambi IM Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633 [TBL] [Abstract][Full Text] [Related]
20. Groundwater Cr(VI) contamination and remediation: A review from 1999 to 2022. Xu H; Zhang H; Qin C; Li X; Xu D; Zhao Y Chemosphere; 2024 Jul; 360():142395. PubMed ID: 38797207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]