These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31260994)
1. Light-induced reactions of methionine and riboflavin in model wine: Effects of hydrolysable tannins and sulfur dioxide. Fracassetti D; Limbo S; Pellegrino L; Tirelli A Food Chem; 2019 Nov; 298():124952. PubMed ID: 31260994 [TBL] [Abstract][Full Text] [Related]
2. Light-Struck Taste in White Wine: Protective Role of Glutathione, Sulfur Dioxide and Hydrolysable Tannins. Fracassetti D; Limbo S; Messina N; Pellegrino L; Tirelli A Molecules; 2021 Aug; 26(17):. PubMed ID: 34500729 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of oenological tannins for preventing the light-struck taste. Fracassetti D; Messina N; Saligari A; Tirelli A Food Chem; 2023 Mar; 404(Pt A):134563. PubMed ID: 36444035 [TBL] [Abstract][Full Text] [Related]
4. Light-induced changes in bottled white wine and underlying photochemical mechanisms. Grant-Preece P; Barril C; Schmidtke LM; Scollary GR; Clark AC Crit Rev Food Sci Nutr; 2017 Mar; 57(4):743-754. PubMed ID: 25879850 [TBL] [Abstract][Full Text] [Related]
5. Response Surface Methodology Approach to Evaluate the Effect of Transition Metals and Oxygen on Photo-Degradation of Methionine in a Model Wine System Containing Riboflavin. Fracassetti D; Ballabio D; Mastro M; Tirelli A; Jeffery DW J Agric Food Chem; 2022 Dec; 70(51):16347-16357. PubMed ID: 36512435 [TBL] [Abstract][Full Text] [Related]
6. Revisiting the mechanism responsible for the light-struck flavor in white wines and Champagnes. Furet A; Sicello A; Guillemat B; Absalon C; Langleron E; Bassani DM Food Chem; 2022 Mar; 372():131281. PubMed ID: 34655832 [TBL] [Abstract][Full Text] [Related]
7. Combined effects of sulfur dioxide, glutathione and light exposure on the conservation of bottled Sauvignon blanc. Díaz I; Castro RI; Ubeda C; Loyola R; Laurie VF Food Chem; 2021 Sep; 356():129689. PubMed ID: 33831830 [TBL] [Abstract][Full Text] [Related]
8. The challenging SO2-mediated chemical build-up of protein aggregates in wines. Chagas R; Ferreira LM; Laia CA; Monteiro S; Ferreira RB Food Chem; 2016 Feb; 192():460-9. PubMed ID: 26304373 [TBL] [Abstract][Full Text] [Related]
9. An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine. Wen Y; Lopez R; Ferreira V J Chromatogr A; 2018 Jan; 1534():130-138. PubMed ID: 29306634 [TBL] [Abstract][Full Text] [Related]
10. Methionine catabolism and production of volatile sulphur compounds by OEnococcus oeni. Pripis-Nicolau L; de Revel G; Bertrand A; Lonvaud-Funel A J Appl Microbiol; 2004; 96(5):1176-84. PubMed ID: 15078536 [TBL] [Abstract][Full Text] [Related]
11. Improvement of wine aromatic quality using mixtures of lysozyme and dimethyl dicarbonate, with low SO2 concentration. Nieto-Rojo R; Luquin A; Ancín-Azpilicueta C Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):1965-75. PubMed ID: 26374496 [TBL] [Abstract][Full Text] [Related]
12. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Barril C; Clark AC; Scollary GR Anal Chim Acta; 2012 Jun; 732():186-93. PubMed ID: 22688051 [TBL] [Abstract][Full Text] [Related]
13. Sulfur-containing amino acid methionine as the precursor of volatile organic sulfur compounds in algea-induced black bloom. Lu X; Fan C; He W; Deng J; Yin H J Environ Sci (China); 2013 Jan; 25(1):33-43. PubMed ID: 23586297 [TBL] [Abstract][Full Text] [Related]
14. A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols. Nikolantonaki M; Waterhouse AL J Agric Food Chem; 2012 Aug; 60(34):8484-91. PubMed ID: 22860891 [TBL] [Abstract][Full Text] [Related]
15. Loss and formation of malodorous volatile sulfhydryl compounds during wine storage. Kreitman GY; Elias RJ; Jeffery DW; Sacks GL Crit Rev Food Sci Nutr; 2019; 59(11):1728-1752. PubMed ID: 29451805 [TBL] [Abstract][Full Text] [Related]
16. Effects of sulfur dioxide on formation of fishy off-odor and undesirable taste in wine consumed with seafood. Fujita A; Isogai A; Endo M; Utsunomiya H; Nakano S; Iwata H J Agric Food Chem; 2010 Apr; 58(7):4414-20. PubMed ID: 20218721 [TBL] [Abstract][Full Text] [Related]
17. Influence of dietary inclusion of tannin extracts from mimosa, chestnut and tara on volatile compounds and flavour in lamb meat. Del Bianco S; Natalello A; Luciano G; Valenti B; Campidonico L; Gkarane V; Monahan F; Biondi L; Favotto S; Sepulcri A; Piasentier E Meat Sci; 2021 Feb; 172():108336. PubMed ID: 33091724 [TBL] [Abstract][Full Text] [Related]
18. Sensory properties of wine tannin fractions: implications for in-mouth sensory properties. McRae JM; Schulkin A; Kassara S; Holt HE; Smith PA J Agric Food Chem; 2013 Jan; 61(3):719-27. PubMed ID: 23289627 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of L-methionine linked to the biosynthesis of volatile organic sulfur-containing compounds during the submerged fermentation of Tuber melanosporum. Liu RS; Zhou H; Li HM; Yuan ZP; Chen T; Tang YJ Appl Microbiol Biotechnol; 2013 Dec; 97(23):9981-92. PubMed ID: 24092005 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the use of sulfur dioxide and glutathione to prevent oxidative degradation of malvidin-3-monoglucoside by hydrogen peroxide in the model solution and real wine. Gambuti A; Picariello L; Rolle L; Moio L Food Res Int; 2017 Sep; 99(Pt 1):454-460. PubMed ID: 28784505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]