BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 31261116)

  • 1. Computational fluid dynamics as a risk assessment tool for aneurysm rupture.
    Murayama Y; Fujimura S; Suzuki T; Takao H
    Neurosurg Focus; 2019 Jul; 47(1):E12. PubMed ID: 31261116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up.
    Zhang X; Karuna T; Yao ZQ; Duan CZ; Wang XM; Jiang ST; Li XF; Yin JH; He XY; Guo SQ; Chen YC; Liu WC; Li R; Fan HY
    J Neurosurg; 2018 Sep; 131(3):868-875. PubMed ID: 30265195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M; Ishikawa T; Ishida F; Furukawa K; Miura Y; Shiba M; Sano T; Tanemura H; Umeda Y; Shimosaka S; Suzuki H
    J Neurosurg; 2017 May; 126(5):1566-1572. PubMed ID: 27257837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms.
    Miura Y; Ishida F; Umeda Y; Tanemura H; Suzuki H; Matsushima S; Shimosaka S; Taki W
    Stroke; 2013 Feb; 44(2):519-21. PubMed ID: 23223503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamics in a Middle Cerebral Artery Aneurysm Before Its Growth and Fatal Rupture: Case Study and Review of the Literature.
    Wang Y; Leng X; Zhou X; Li W; Siddiqui AH; Xiang J
    World Neurosurg; 2018 Nov; 119():e395-e402. PubMed ID: 30071328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in wall shear stress magnitude after aneurysm rupture.
    Kono K; Tomura N; Yoshimura R; Terada T
    Acta Neurochir (Wien); 2013 Aug; 155(8):1559-63. PubMed ID: 23715949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rupture prediction of intracranial aneurysms: a nationwide matched case-control study of hemodynamics at the time of diagnosis.
    Skodvin TØ; Evju Ø; Helland CA; Isaksen JG
    J Neurosurg; 2018 Oct; 129(4):854-860. PubMed ID: 29099302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture - a systematic review and novel parameter-ranking tool.
    Liang L; Steinman DA; Brina O; Chnafa C; Cancelliere NM; Pereira VM
    J Neurointerv Surg; 2019 Feb; 11(2):153-158. PubMed ID: 30341160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow Dynamics of Aneurysm Growth and Rupture: Challenges for the Development of Computational Flow Dynamics as a Diagnostic Tool to Detect Rupture-Prone Aneurysms.
    Frösen J
    Acta Neurochir Suppl; 2016; 123():89-95. PubMed ID: 27637634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture.
    Cebral JR; Vazquez M; Sforza DM; Houzeaux G; Tateshima S; Scrivano E; Bleise C; Lylyk P; Putman CM
    J Neurointerv Surg; 2015 Jul; 7(7):530-6. PubMed ID: 24827066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture.
    Soldozy S; Norat P; Elsarrag M; Chatrath A; Costello JS; Sokolowski JD; Tvrdik P; Kalani MYS; Park MS
    Neurosurg Focus; 2019 Jul; 47(1):E11. PubMed ID: 31261115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall.
    Jiang P; Liu Q; Wu J; Chen X; Li M; Li Z; Yang S; Guo R; Gao B; Cao Y; Wang R; Wang S
    J Clin Neurosci; 2019 Sep; 67():185-190. PubMed ID: 31253387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
    Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR
    Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.
    Xiang J; Tutino VM; Snyder KV; Meng H
    AJNR Am J Neuroradiol; 2014 Oct; 35(10):1849-57. PubMed ID: 24029393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Hemodynamic Characteristics Before Growth in Growing Cerebral Aneurysms by Analyzing Time-of-Flight Magnetic Resonance Angiography Images Alone: Preliminary Results.
    Kimura H; Hayashi K; Taniguchi M; Hosoda K; Fujita A; Seta T; Tomiyama A; Kohmura E
    World Neurosurg; 2019 Feb; 122():e1439-e1448. PubMed ID: 30465954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of intracranial aneurysm rupture status: patient-specific inflow boundary may not be a must-have condition in hemodynamic simulations.
    Li W; Wang S; Tian Z; Zhu W; Zhang Y; Zhang Y; Wang Y; Wang K; Yang X; Liu J
    Neuroradiology; 2020 Nov; 62(11):1485-1495. PubMed ID: 32588092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.