BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31261124)

  • 1. Shear stress and aneurysms: a review.
    Staarmann B; Smith M; Prestigiacomo CJ
    Neurosurg Focus; 2019 Jul; 47(1):E2. PubMed ID: 31261124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture.
    Soldozy S; Norat P; Elsarrag M; Chatrath A; Costello JS; Sokolowski JD; Tvrdik P; Kalani MYS; Park MS
    Neurosurg Focus; 2019 Jul; 47(1):E11. PubMed ID: 31261115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.
    Dolan JM; Meng H; Sim FJ; Kolega J
    Am J Physiol Cell Physiol; 2013 Oct; 305(8):C854-66. PubMed ID: 23885059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of matrix metalloproteinases in the pathogenesis of intracranial aneurysms.
    Zhang X; Ares WJ; Taussky P; Ducruet AF; Grandhi R
    Neurosurg Focus; 2019 Jul; 47(1):E4. PubMed ID: 31261127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
    Dolan JM; Meng H; Singh S; Paluch R; Kolega J
    Ann Biomed Eng; 2011 Jun; 39(6):1620-31. PubMed ID: 21312062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stress association with rupture status in volume matched sidewall aneurysms.
    Lauric A; Hippelheuser J; Cohen AD; Kadasi LM; Malek AM
    J Neurointerv Surg; 2014 Jul; 6(6):466-73. PubMed ID: 23929550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model.
    Kolega J; Gao L; Mandelbaum M; Mocco J; Siddiqui AH; Natarajan SK; Meng H
    J Vasc Res; 2011; 48(5):429-42. PubMed ID: 21625176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study.
    Boussel L; Rayz V; McCulloch C; Martin A; Acevedo-Bolton G; Lawton M; Higashida R; Smith WS; Young WL; Saloner D
    Stroke; 2008 Nov; 39(11):2997-3002. PubMed ID: 18688012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal stenosis may induce initiation of cerebral aneurysms by increasing wall shear stress and wall shear stress gradient.
    Kono K; Fujimoto T; Terada T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):942-50. PubMed ID: 24706583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial dysfunction in cerebral aneurysms.
    Sheinberg DL; McCarthy DJ; Elwardany O; Bryant JP; Luther E; Chen SH; Thompson JW; Starke RM
    Neurosurg Focus; 2019 Jul; 47(1):E3. PubMed ID: 31389675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial aneurysms: from vessel wall pathology to therapeutic approach.
    Krings T; Mandell DM; Kiehl TR; Geibprasert S; Tymianski M; Alvarez H; terBrugge KG; Hans FJ
    Nat Rev Neurol; 2011 Sep; 7(10):547-59. PubMed ID: 21931350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up.
    Zhang X; Karuna T; Yao ZQ; Duan CZ; Wang XM; Jiang ST; Li XF; Yin JH; He XY; Guo SQ; Chen YC; Liu WC; Li R; Fan HY
    J Neurosurg; 2018 Sep; 131(3):868-875. PubMed ID: 30265195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms.
    Shojima M; Oshima M; Takagi K; Torii R; Hayakawa M; Katada K; Morita A; Kirino T
    Stroke; 2004 Nov; 35(11):2500-5. PubMed ID: 15514200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture.
    Jayaraman T; Paget A; Shin YS; Li X; Mayer J; Chaudhry H; Niimi Y; Silane M; Berenstein A
    Vasc Health Risk Manag; 2008; 4(4):805-17. PubMed ID: 19065997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm.
    Aoki T; Yamamoto K; Fukuda M; Shimogonya Y; Fukuda S; Narumiya S
    Acta Neuropathol Commun; 2016 May; 4(1):48. PubMed ID: 27160403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wall shear stress and strain modulate experimental aneurysm cellularity.
    Hoshina K; Sho E; Sho M; Nakahashi TK; Dalman RL
    J Vasc Surg; 2003 May; 37(5):1067-74. PubMed ID: 12756356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory Smooth Muscle Cells Induce Endothelial Cell Alterations to Influence Cerebral Aneurysm Progression via Regulation of Integrin and VEGF Expression.
    Liu P; Shi Y; Fan Z; Zhou Y; Song Y; Liu Y; Yu G; An Q; Zhu W
    Cell Transplant; 2019 Jun; 28(6):713-722. PubMed ID: 30497276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.