These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31261708)
1. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Zheng C; Yue Y; Gan L; Xu X; Mei C; Han J Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261708 [TBL] [Abstract][Full Text] [Related]
2. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881 [TBL] [Abstract][Full Text] [Related]
3. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. Ding Q; Xu X; Yue Y; Mei C; Huang C; Jiang S; Wu Q; Han J ACS Appl Mater Interfaces; 2018 Aug; 10(33):27987-28002. PubMed ID: 30043614 [TBL] [Abstract][Full Text] [Related]
4. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. Zhao L; Ren Z; Liu X; Ling Q; Li Z; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(9):11344-11355. PubMed ID: 33620195 [TBL] [Abstract][Full Text] [Related]
5. Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor. Chen C; Wang J; Xu Z; Chen N; Wang F Int J Biol Macromol; 2023 Aug; 247():125595. PubMed ID: 37394214 [TBL] [Abstract][Full Text] [Related]
6. A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. Zhang Y; Ren E; Li A; Cui C; Guo R; Tang H; Xiao H; Zhou M; Qin W; Wang X; Liu L J Mater Chem B; 2021 Jan; 9(3):719-730. PubMed ID: 33306084 [TBL] [Abstract][Full Text] [Related]
7. A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection. Liu X; Shi H; Song F; Yang W; Yang B; Ding D; Liu Z; Hui L; Zhang F Int J Biol Macromol; 2024 Feb; 257(Pt 2):128800. PubMed ID: 38101658 [TBL] [Abstract][Full Text] [Related]
8. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
9. Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH Shao L; Li Y; Ma Z; Bai Y; Wang J; Zeng P; Gong P; Shi F; Ji Z; Qiao Y; Xu R; Xu J; Zhang G; Wang C; Ma J ACS Appl Mater Interfaces; 2020 Jun; 12(23):26496-26508. PubMed ID: 32406670 [TBL] [Abstract][Full Text] [Related]
10. A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors. Ma Y; Liu K; Lao L; Li X; Zhang Z; Lu S; Li Y; Li Z Int J Biol Macromol; 2022 Apr; 205():491-499. PubMed ID: 35182565 [TBL] [Abstract][Full Text] [Related]
11. Highly Stretchable and Stimulus-Free Self-Healing Hydrogels with Multiple Signal Detection Performance for Self-Powered Wearable Temperature Sensors. Chai X; Tang J; Li Y; Cao Y; Chen X; Chen T; Zhang Z ACS Appl Mater Interfaces; 2023 Apr; 15(14):18262-18271. PubMed ID: 37002947 [TBL] [Abstract][Full Text] [Related]
12. Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring. Li X; Ma Y; Li D; Lu S; Li Y; Li Z Int J Biol Macromol; 2022 Dec; 223(Pt A):1530-1538. PubMed ID: 36402382 [TBL] [Abstract][Full Text] [Related]
13. Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors. Li L; Ji X; Chen K J Biomater Appl; 2023 Feb; 37(7):1169-1181. PubMed ID: 36189748 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. Liu X; Ren Z; Liu F; Zhao L; Ling Q; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(12):14612-14622. PubMed ID: 33723988 [TBL] [Abstract][Full Text] [Related]
15. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors. Zhang R; Yang A; Yang Y; Zhu Y; Song Y; Li Y; Li J Int J Biol Macromol; 2023 Aug; 245():125469. PubMed ID: 37343611 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Performance of Corn Starch/Poly(Vinyl Alcohol) Composite Hydrogels Reinforced by Inorganic Nanoparticles and Cellulose Nanofibers. Takeno H; Shikano R; Kikuchi R Gels; 2022 Aug; 8(8):. PubMed ID: 36005115 [TBL] [Abstract][Full Text] [Related]
17. A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate. Li M; Wang Y; Wei Q; Zhang J; Chen X; An Y Gels; 2024 Apr; 10(4):. PubMed ID: 38667677 [TBL] [Abstract][Full Text] [Related]
18. Ultra-Stretchable, Adhesive, Conductive, and Antifreezing Multinetwork Borate Ester-Based Hydrogel for Wearable Strain Sensor and VOC Absorption. Wang R; Liu C; Li Z; Li Y; Yu X ACS Sens; 2024 Oct; 9(10):5322-5332. PubMed ID: 39404651 [TBL] [Abstract][Full Text] [Related]
19. Natural Glycyrrhizic Acid-Tailored Homogeneous Conductive Polyaniline Hydrogel as a Flexible Strain Sensor. Zhao L; Zhang H; Guo Z; Yu X; Jiao X; Li MH; Hu J ACS Appl Mater Interfaces; 2022 Nov; 14(45):51394-51403. PubMed ID: 36397311 [TBL] [Abstract][Full Text] [Related]
20. A highly stretchable and self-adhesive cellulose complex hydrogels based on PDA@Fe Wang J; Li W; Liu J; Li J; Wang F Int J Biol Macromol; 2024 Nov; 281(Pt 1):136307. PubMed ID: 39370073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]