These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31261708)
21. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties. Chen M; Quan Q; You Z; Dong Y; Zhou X Int J Biol Macromol; 2023 Dec; 253(Pt 6):127396. PubMed ID: 37827399 [TBL] [Abstract][Full Text] [Related]
22. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. Zhao R; Zhao Z; Song S; Wang Y ACS Appl Mater Interfaces; 2023 Dec; 15(51):59854-59865. PubMed ID: 38095585 [TBL] [Abstract][Full Text] [Related]
23. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921 [TBL] [Abstract][Full Text] [Related]
24. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
25. Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. Cong C; Wang R; Zhu W; Zheng X; Sun F; Wang X; Jiang F; Joo SW; Lim S; Kim SH; Li X J Colloid Interface Sci; 2025 Jan; 678(Pt B):588-598. PubMed ID: 39265331 [TBL] [Abstract][Full Text] [Related]
26. Self-Healable Electro-Conductive Hydrogels Based on Core-Shell Structured Nanocellulose/Carbon Nanotubes Hybrids for Use as Flexible Supercapacitors. Wang H; Biswas SK; Zhu S; Lu Y; Yue Y; Han J; Xu X; Wu Q; Xiao H Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31935929 [TBL] [Abstract][Full Text] [Related]
27. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412 [TBL] [Abstract][Full Text] [Related]
28. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Zhang Y; Li S; Gao Z; Bi D; Qu N; Huang S; Zhao X; Li R Carbohydr Polym; 2023 Sep; 315():120953. PubMed ID: 37230609 [TBL] [Abstract][Full Text] [Related]
30. Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Huang S; Shuyi S; Gan H; Linjun W; Lin C; Danyuan X; Zhou H; Lin X; Qin Y Carbohydr Polym; 2019 Nov; 223():115080. PubMed ID: 31427024 [TBL] [Abstract][Full Text] [Related]
31. Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors. Xiao G; Wang Y; Zhang H; Zhu Z; Fu S Int J Biol Macromol; 2021 Feb; 170():272-283. PubMed ID: 33359808 [TBL] [Abstract][Full Text] [Related]
32. Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. Jiao Y; Lu Y; Lu K; Yue Y; Xu X; Xiao H; Li J; Han J J Colloid Interface Sci; 2021 Sep; 597():171-181. PubMed ID: 33866209 [TBL] [Abstract][Full Text] [Related]
33. Multiply cross-linked poly(vinyl alcohol)/cellulose nanofiber composite ionic conductive hydrogels for strain sensors. Wu J; Wu X; Yang F; Liu X; Meng F; Ma Q; Che Y Int J Biol Macromol; 2023 Jan; 225():1119-1128. PubMed ID: 36414077 [TBL] [Abstract][Full Text] [Related]
34. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Zhou X; Rajeev A; Subramanian A; Li Y; Rossetti N; Natale G; Lodygensky GA; Cicoira F Acta Biomater; 2022 Feb; 139():296-306. PubMed ID: 34365040 [TBL] [Abstract][Full Text] [Related]
35. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors. Ding H; Liu J; Huo P; Ding R; Shen X; Mao H; Wen Y; Li H; Wu ZL Int J Biol Macromol; 2023 Dec; 253(Pt 5):127146. PubMed ID: 37778581 [TBL] [Abstract][Full Text] [Related]
36. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157 [TBL] [Abstract][Full Text] [Related]
37. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Wei J; Wang R; Pan F; Fu Z Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458997 [TBL] [Abstract][Full Text] [Related]
38. Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device. Kondaveeti S; Choi G; Veerla SC; Kim S; Kim J; Lee HJ; Kuzhiumparambil U; Ralph PJ; Yeo J; Jeong HE Nano Converg; 2024 Mar; 11(1):12. PubMed ID: 38512587 [TBL] [Abstract][Full Text] [Related]
39. Multifunctional Poly(vinyl alcohol) Nanocomposite Organohydrogel for Flexible Strain and Temperature Sensor. Gu J; Huang J; Chen G; Hou L; Zhang J; Zhang X; Yang X; Guan L; Jiang X; Liu H ACS Appl Mater Interfaces; 2020 Sep; 12(36):40815-40827. PubMed ID: 32794689 [TBL] [Abstract][Full Text] [Related]
40. Highly stretchable polyvinyl alcohol composite conductive hydrogel sensors reinforced by cellulose nanofibrils and liquid metal for information transmission. Hang T; Chen Y; Yin F; Shen J; Li X; Li Z; Zheng J Int J Biol Macromol; 2024 Feb; 258(Pt 1):128855. PubMed ID: 38114002 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]