These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31261717)

  • 1. Measurement Accuracy Enhancement via Radio Frequency Filtering in Distributed Brillouin Sensing.
    Feng C; Preussler S; Emad Kadum J; Schneider T
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.
    Guo N; Wang L; Wang J; Jin C; Tam HY; Zhang AP; Lu C
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic coding for Brillouin optical time-domain analyzers using probe dithering.
    Iribas H; Loayssa A; Sauser F; Llera M; Le Floch S
    Opt Express; 2017 Apr; 25(8):8787-8800. PubMed ID: 28437955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brillouin Frequency Shift of Fiber Distributed Sensors Extracted from Noisy Signals by Quadratic Fitting.
    Zheng H; Fang Z; Wang Z; Lu B; Cao Y; Ye Q; Qu R; Cai H
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29385052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors.
    Urricelqui J; Sagues M; Loayssa A
    Opt Express; 2014 Jul; 22(15):18195-202. PubMed ID: 25089438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design rules for optimizing unipolar coded Brillouin optical time-domain analyzers.
    Yang Z; Li Z; Zaslawski S; Thévenaz L; Soto MA
    Opt Express; 2018 Jun; 26(13):16505-16523. PubMed ID: 30119480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Noise Induced by Stimulated Brillouin Scattering in Distributed Sensing.
    Kadum JE; Feng C; Schneider T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of optical noises on unipolar-coded Brillouin optical time-domain analyzers.
    Gao X; Yang Z; Wang S; Hong X; Sun X; Soto MA; Wu J; Thévenaz L
    Opt Express; 2021 Jul; 29(14):22146-22158. PubMed ID: 34265986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the signal-to-noise ratio of Brillouin optical-time domain analyzers.
    Wang S; Yang Z; Soto MA; Thévenaz L
    Opt Express; 2020 Jul; 28(14):19864-19876. PubMed ID: 32680057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers.
    Lin W; Yang Z; Hong X; Wang S; Wu J
    Opt Express; 2017 Apr; 25(7):7604-7615. PubMed ID: 28380880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNR enhancement for Brillouin distributed optical fiber sensors based on asynchronous control.
    Zhang P; Wang B; Yang Y; Azad AK; Luo K; Yu K; Yu C; Lu C
    Opt Express; 2022 Jan; 30(3):4231-4248. PubMed ID: 35209664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brillouin frequency shift error estimation formula for distributed optical fiber sensing technology based on Brillouin scattering.
    Zhao L; Chen Y; Xu Z; Zhang X; Mou Q
    Appl Opt; 2022 May; 61(15):4354-4362. PubMed ID: 36256272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods.
    Motil A; Davidi R; Hadar R; Tur M
    Opt Express; 2017 Sep; 25(19):22206-22218. PubMed ID: 29041535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-shot distributed Brillouin optical time domain analyzer.
    Fang J; Xu P; Dong Y; Shieh W
    Opt Express; 2017 Jun; 25(13):15188-15198. PubMed ID: 28788948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm.
    Zheng H; Xiao F; Sun S; Qin Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the accuracy of BOTDA systems based on the phase spectral response.
    Lopez-Gil A; Soto MA; Angulo-Vinuesa X; Dominguez-Lopez A; Martin-Lopez S; Thévenaz L; Gonzalez-Herraez M
    Opt Express; 2016 Jul; 24(15):17200-14. PubMed ID: 27464170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic distributed optical fiber sensing based on simultaneous measurement of Brillouin gain and loss spectra with frequency-agile technique.
    Zhou D; Li P; Ba D; Hasi W; Dong Y
    Opt Lett; 2023 Jun; 48(12):3151-3154. PubMed ID: 37319049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase fluctuation cancellation for coherent-detection BOTDA fiber sensors based on optical subcarrier multiplexing.
    Li Z; Zhou Y; Jiang B; Gan X; Yan L; Zhao J
    Opt Lett; 2021 Feb; 46(4):757-760. PubMed ID: 33577507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection.
    Bao X; Zhou Z; Wang Y
    Photonix; 2021; 2(1):14. PubMed ID: 34841256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards fast sensing along ultralong BOTDA: flatness enhancement by utilizing injection-locked dual-bandwidth probe wave.
    Yang Y; Liu L; Deng Q; Jia X; Wu H; Liang W; Jiang L; Song W; Ma H; Lin J; Xu S
    Opt Express; 2022 Jun; 30(12):20501-20514. PubMed ID: 36224793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.