These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31261875)

  • 1. Simulation of Laser-assisted Directed Energy Deposition of Aluminum Powder: Prediction of Geometry and Temperature Evolution.
    Caiazzo F; Alfieri V
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31261875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition.
    Piscopo G; Atzeni E; Salmi A
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31480677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Laser Heating of Aluminum and Model Validation via Two-Color Pyrometer and Shape Assessment.
    Caiazzo F; Alfieri V
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30135393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Modeling Design for the Hybrid Additive Manufacturing of Laser Directed Energy Deposition and Shot Peening Forming Fe-Cr-Ni-B-Si Alloy.
    Zhang X; Li D; Zhu W
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.
    Caiazzo F; Alfieri V
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29547571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process.
    Kiran A; Hodek J; Vavřík J; Urbánek M; Džugan J
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32545324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Source Modeling and Residual Stress Analysis for Metal Directed Energy Deposition Additive Manufacturing.
    Kiran A; Li Y; Hodek J; Brázda M; Urbánek M; Džugan J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on Metallic Alloys Fabrication Using Elemental Powder Blends by Laser Powder Directed Energy Deposition Process.
    Chen Y; Zhang X; Parvez MM; Liou F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32806690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Simulation of Laser-Based Direct Energy Deposition (DED-LB/M) Using Powder Feedstock for Surface Repair of Aluminum Alloy.
    Zhou X; Pei Z; Liu Z; Yang L; Yin Y; He Y; Wu Q; Nie Y
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
    Caiazzo F; Caggiano A
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29562682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Modeling of In-Process Temperature in Powder Bed Additive Manufacturing Considering Laser Power Absorption, Latent Heat, Scanning Strategy, and Powder Packing.
    Ning J; Sievers DE; Garmestani H; Liang SY
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30857209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Simulation and Experimental Study on Residual Stress in the Curved Surface Forming of 12CrNi2 Alloy Steel by Laser Melting Deposition.
    Cui Z; Hu X; Dong S; Yan S; Zhao X
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Operating Windows Prediction in Selective Laser-Melting Processing of Metallic Powders: Development and Validation of a Computational Fluid Dynamics-Based Model.
    Ridolfi MR; Folgarait P; Di Schino A
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32245059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Single Tracks of Ti-6Al-4V by Directed Energy Deposition to Determine the Layer Thickness for Multilayer Deposition.
    Saboori A; Tusacciu S; Busatto M; Lai M; Biamino S; Fino P; Lombardi M
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput, in situ imaging of multi-layer powder-blown directed energy deposition with angled nozzle.
    Webster S; Giovannini M; Shi Y; Martinez-Prieto N; Fezzaa K; Sun T; Ehmann K; Cao J
    Rev Sci Instrum; 2022 Feb; 93(2):023701. PubMed ID: 35232143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Manufacturing of β-NiAl by Means of Laser Metal Deposition of Pre-Alloyed and Elemental Powders.
    Müller M; Heinen B; Riede M; López E; Brückner F; Leyens C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Assessment Methodology for Laser Metal Deposition of New Metallic Alloys.
    Cearsolo X; Arrue M; Gabilondo M; Sanchez JM; Galarraga H; Garcia de Cortazar M; Girot Mata F
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-Driven Prediction and Uncertainty Quantification of Process Parameters for Directed Energy Deposition.
    Hermann F; Michalowski A; Brünnette T; Reimann P; Vogt S; Graf T
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Remelting Process Simulation and Optimization for Additive Manufacturing of Nickel-Based Super Alloys.
    Soffel F; Lin Y; Keller D; Egorov S; Wegener K
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.