These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 31261995)
1. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Li Y; Liao C; Tjong SC Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261995 [TBL] [Abstract][Full Text] [Related]
2. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility. Gryshkov O; Al Halabi F; Kuhn AI; Leal-Marin S; Freund LJ; Förthmann M; Meier N; Barker SA; Haastert-Talini K; Glasmacher B Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768804 [TBL] [Abstract][Full Text] [Related]
3. Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Wu S; Chen MS; Maurel P; Lee YS; Bunge MB; Arinzeh TL J Neural Eng; 2018 Oct; 15(5):056010. PubMed ID: 29794323 [TBL] [Abstract][Full Text] [Related]
4. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Lee YS; Collins G; Arinzeh TL Acta Biomater; 2011 Nov; 7(11):3877-86. PubMed ID: 21810489 [TBL] [Abstract][Full Text] [Related]
5. Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds. Al Halabi F; Gryshkov O; Kuhn AI; Kapralova VM; Glasmacher B Int J Artif Organs; 2018 Nov; 41(11):811-822. PubMed ID: 29976127 [TBL] [Abstract][Full Text] [Related]
6. Innervation of an Ultrasound-Mediated PVDF-TrFE Scaffold for Skin-Tissue Engineering. Westphal JA; Bryan AE; Krutko M; Esfandiari L; Schutte SC; Harris GM Biomimetics (Basel); 2023 Dec; 9(1):. PubMed ID: 38275450 [TBL] [Abstract][Full Text] [Related]
7. The effect of PVDF-TrFE scaffolds on stem cell derived cardiovascular cells. Hitscherich P; Wu S; Gordan R; Xie LH; Arinzeh T; Lee EJ Biotechnol Bioeng; 2016 Jul; 113(7):1577-85. PubMed ID: 26705272 [TBL] [Abstract][Full Text] [Related]
8. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302 [TBL] [Abstract][Full Text] [Related]
10. Improved Piezoelectric Sensing Performance of P(VDF-TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes. Hu X; Yan X; Gong L; Wang F; Xu Y; Feng L; Zhang D; Jiang Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):7379-7386. PubMed ID: 30676033 [TBL] [Abstract][Full Text] [Related]
11. Wide-band electrical and electromechanical properties of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) piezoelectric films using electro-acoustic reflectometry. Maréchal É; Géron E; Holé S J Acoust Soc Am; 2023 Apr; 153(4):2499. PubMed ID: 37097111 [TBL] [Abstract][Full Text] [Related]
12. Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation. Lins LC; Wianny F; Livi S; Dehay C; Duchet-Rumeau J; Gérard JF J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2376-2393. PubMed ID: 27571576 [TBL] [Abstract][Full Text] [Related]
13. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications. Augustine A; Augustine R; Hasan A; Raghuveeran V; Rouxel D; Kalarikkal N; Thomas S J Mater Sci Mater Med; 2019 Aug; 30(8):96. PubMed ID: 31414231 [TBL] [Abstract][Full Text] [Related]
14. Electrospun ZnO/Poly(Vinylidene Fluoride-Trifluoroethylene) Scaffolds for Lung Tissue Engineering. Azimi B; Sorayani Bafqi MS; Fusco A; Ricci C; Gallone G; Bagherzadeh R; Donnarumma G; Uddin MJ; Latifi M; Lazzeri A; Danti S Tissue Eng Part A; 2020 Dec; 26(23-24):1312-1331. PubMed ID: 32842903 [TBL] [Abstract][Full Text] [Related]
15. Electric poling and electromechanical characterization of 0.1-mm-thick sensor films and 0.2-mm-thick cable layers from piezoelectric poly(vinylidene fluoride-trifluoroethylene). Wegener M; Gerhard-Multhaupt R IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):921-31. PubMed ID: 12894925 [TBL] [Abstract][Full Text] [Related]
16. Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Wang X; Sun F; Yin G; Wang Y; Liu B; Dong M Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29364175 [TBL] [Abstract][Full Text] [Related]
17. Aligned P(VDF-TrFE) Nanofibers for Enhanced Piezoelectric Directional Strain Sensing. Jiang Y; Gong L; Hu X; Zhao Y; Chen H; Feng L; Zhang D Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966399 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound-Activated Piezoelectric Polyvinylidene Fluoride-Trifluoroethylene Scaffolds for Tissue Engineering Applications. Bryan AE; Krutko M; Westphal J; Sheth M; Esfandiari L; Harris GM Mil Med; 2023 Nov; 188(Suppl 6):61-66. PubMed ID: 37948229 [TBL] [Abstract][Full Text] [Related]
19. Polyvinylidene fluoride/silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application. Lee JC; Suh IW; Park CH; Kim CS J Tissue Eng Regen Med; 2021 Oct; 15(10):869-877. PubMed ID: 34339581 [TBL] [Abstract][Full Text] [Related]
20. Mechanical stimulation of a bioactive, functionalized PVDF-TrFE scaffold provides electrical signaling for nerve repair applications. Orkwis JA; Wolf AK; Mularczyk ZJ; Bryan AE; Smith CS; Brown R; Krutko M; McCann A; Collar RM; Esfandiari L; Harris GM Biomater Adv; 2022 Sep; 140():213081. PubMed ID: 35994930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]