BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31262087)

  • 1. Grasping and Releasing Agarose micro Beads in Water Drops.
    Vurchio F; Ursi P; Buzzin A; Veroli A; Scorza A; Verotti M; Sciuto SA; Pio Belfiore N
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Cold Arm Width and Metal Deposition on the Performance of a U-Beam Electrothermal MEMS Microgripper for Biomedical Applications.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untethered microgripper-the dexterous hand at microscale.
    Yin C; Wei F; Zhan Z; Zheng J; Yao L; Yang W; Li M
    Biomed Microdevices; 2019 Aug; 21(4):82. PubMed ID: 31418070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a large-range rotary microgripper with freeform geometries using a genetic algorithm.
    Wang C; Wang Y; Fang W; Song X; Quan A; Gidts M; Zhang H; Liu H; Bai J; Sadeghpour S; Kraft M
    Microsyst Nanoeng; 2022; 8():3. PubMed ID: 35047208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical characterization of polymeric microcapsules using a force-feedback MEMS microgripper.
    Kim K; Liu X; Zhang Y; Cheng J; Wu XY; Sun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1845-8. PubMed ID: 19163042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical, Numerical and Experimental Study of a Horizontal Electrothermal MEMS Microgripper for the Deformability Characterisation of Human Red Blood Cells.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untethered Microgrippers for Precision Medicine.
    Zhou H; Zhang S; Liu Z; Chi B; Li J; Wang Y
    Small; 2024 Mar; 20(11):e2305805. PubMed ID: 37941516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation.
    Sun X; Chen W; Tian Y; Fatikow S; Zhou R; Zhang J; Mikczinski M
    Rev Sci Instrum; 2013 Aug; 84(8):085002. PubMed ID: 24007097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Driven Two-Finger Micro-Hand with Soft Magnetic End-Effector for Force-Controlled Stable Manipulation in Microscale.
    Liu D; Liu X; Li P; Tang X; Kojima M; Huang Q; Arai T
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
    Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K
    Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter.
    Morita N; Nogami H; Higurashi E; Sawada R
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29360799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pick-and-place using chemically actuated microgrippers.
    Randhawa JS; Leong TG; Bassik N; Benson BR; Jochmans MT; Gracias DH
    J Am Chem Soc; 2008 Dec; 130(51):17238-9. PubMed ID: 19053402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Actuated Microgripper Using Optimized Chevron-Shaped Actuator.
    Ahmad B; Chambon H; Tissier P; Bolopion A
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications.
    Velosa-Moncada LA; Aguilera-Cortés LA; González-Palacios MA; Raskin JP; Herrera-May AL
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29789474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptic controlled three-axis MEMS gripper system.
    Vijayasai AP; Sivakumar G; Mulsow M; Lacouture S; Holness A; Dallas TE
    Rev Sci Instrum; 2010 Oct; 81(10):105114. PubMed ID: 21034126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genetic algorithm-based method for the mechanical characterization of biosamples using a MEMS microgripper: numerical simulations.
    Verotti M; Di Giamberardino P; Belfiore NP; Giannini O
    J Mech Behav Biomed Mater; 2019 Aug; 96():88-95. PubMed ID: 31029998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Analysis of a Light-Operated Microgripper Using an Opto-Electrostatic Repulsive Combined Actuator.
    Huang J; Jiang C; Li G; Lu Q; Chen H
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Soft Microrobot Design for Cell Grasping and Transportation.
    Wang F; Zhang Y; Jin D; Jiang Z; Liu Y; Knoll A; Jiang H; Ying Y; Zhou M
    Cyborg Bionic Syst; 2024; 5():0109. PubMed ID: 38680536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A magnetic micro-manipulator for application of three dimensional forces.
    Punyabrahma P; Jayanth GR
    Rev Sci Instrum; 2015 Feb; 86(2):025004. PubMed ID: 25725878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Analysis of a CSFH-Based Microgripper: Analytical Modeling and Simulation.
    Yallew TS; Belfiore NP; Bagolini A; Pantano MF
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.