These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
927 related articles for article (PubMed ID: 31262249)
1. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters. Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249 [TBL] [Abstract][Full Text] [Related]
2. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
3. Visualization of Single Cell RNA-Seq Data Using t-SNE in R. Zhou B; Jin W Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377 [TBL] [Abstract][Full Text] [Related]
4. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
5. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications. Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739 [TBL] [Abstract][Full Text] [Related]
6. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data. Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377 [TBL] [Abstract][Full Text] [Related]
7. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
8. Digital Cell Sorter (DCS): a cell type identification, anomaly detection, and Hopfield landscapes toolkit for single-cell transcriptomics. Domanskyi S; Hakansson A; Bertus TJ; Paternostro G; Piermarocchi C PeerJ; 2021; 9():e10670. PubMed ID: 33520459 [TBL] [Abstract][Full Text] [Related]
10. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
11. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
12. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Lin P; Troup M; Ho JW Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406 [TBL] [Abstract][Full Text] [Related]
13. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
14. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Müller S; Cho A; Liu SJ; Lim DA; Diaz A Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414 [TBL] [Abstract][Full Text] [Related]
15. A rank-based marker selection method for high throughput scRNA-seq data. Vargo AHS; Gilbert AC BMC Bioinformatics; 2020 Oct; 21(1):477. PubMed ID: 33097004 [TBL] [Abstract][Full Text] [Related]
16. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data. Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748 [TBL] [Abstract][Full Text] [Related]
17. CBLRR: a cauchy-based bounded constraint low-rank representation method to cluster single-cell RNA-seq data. Ding Q; Yang W; Luo M; Xu C; Xu Z; Pang F; Cai Y; Anashkina AA; Su X; Chen N; Jiang Q Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35870203 [TBL] [Abstract][Full Text] [Related]
18. Single cell RNA-seq data clustering using TF-IDF based methods. Moussa M; Măndoiu II BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575 [TBL] [Abstract][Full Text] [Related]
19. ACTINN: automated identification of cell types in single cell RNA sequencing. Ma F; Pellegrini M Bioinformatics; 2020 Jan; 36(2):533-538. PubMed ID: 31359028 [TBL] [Abstract][Full Text] [Related]
20. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Linderman GC; Rachh M; Hoskins JG; Steinerberger S; Kluger Y Nat Methods; 2019 Mar; 16(3):243-245. PubMed ID: 30742040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]