These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31263059)

  • 1. Genomic Prediction of Additive and Non-additive Effects Using Genetic Markers and Pedigrees.
    de Almeida Filho JE; Guimarães JFR; Fonsceca E Silva F; Vilela de Resende MD; Muñoz P; Kirst M; de Resende Júnior MFR
    G3 (Bethesda); 2019 Aug; 9(8):2739-2748. PubMed ID: 31263059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat.
    Juliana P; Singh RP; Singh PK; Crossa J; Huerta-Espino J; Lan C; Bhavani S; Rutkoski JE; Poland JA; Bergstrom GC; Sorrells ME
    Theor Appl Genet; 2017 Jul; 130(7):1415-1430. PubMed ID: 28393303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Studies Reveal Substantial Dominant Effects and Improved Genomic Predictions in an Open-Pollinated Breeding Population of
    Thavamanikumar S; Arnold RJ; Luo J; Thumma BR
    G3 (Bethesda); 2020 Oct; 10(10):3751-3763. PubMed ID: 32788286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of dominance to phenotype prediction in a pine breeding and simulated population.
    de Almeida Filho JE; Guimarães JF; E Silva FF; de Resende MD; Muñoz P; Kirst M; Resende MF
    Heredity (Edinb); 2016 Jul; 117(1):33-41. PubMed ID: 27118156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic studies with preselected markers reveal dominance effects influencing growth traits in Eucalyptus nitens.
    Thumma BR; Joyce KR; Jacobs A
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat.
    Juliana P; Singh RP; Singh PK; Crossa J; Rutkoski JE; Poland JA; Bergstrom GC; Sorrells ME
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic dissection of additive and non-additive genetic effects and genomic prediction in an open-pollinated family test of Japanese larch.
    Dong L; Xie Y; Zhang Y; Wang R; Sun X
    BMC Genomics; 2024 Jan; 25(1):11. PubMed ID: 38166605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic prediction in maize breeding populations with genotyping-by-sequencing.
    Crossa J; Beyene Y; Kassa S; Pérez P; Hickey JM; Chen C; de los Campos G; Burgueño J; Windhausen VS; Buckler E; Jannink JL; Lopez Cruz MA; Babu R
    G3 (Bethesda); 2013 Nov; 3(11):1903-26. PubMed ID: 24022750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce.
    Chen ZQ; Baison J; Pan J; Karlsson B; Andersson B; Westin J; García-Gil MR; Wu HX
    BMC Genomics; 2018 Dec; 19(1):946. PubMed ID: 30563448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ridge, Lasso and Bayesian additive-dominance genomic models.
    Azevedo CF; de Resende MD; E Silva FF; Viana JM; Valente MS; Resende MF; Muñoz P
    BMC Genet; 2015 Aug; 16():105. PubMed ID: 26303864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling additive from nonadditive effects using genomic relationship matrices.
    Muñoz PR; Resende MF; Gezan SA; Resende MD; de Los Campos G; Kirst M; Huber D; Peter GF
    Genetics; 2014 Dec; 198(4):1759-68. PubMed ID: 25324160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.
    Da Y; Wang C; Wang S; Hu G
    PLoS One; 2014; 9(1):e87666. PubMed ID: 24498162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic selection accuracies within and between environments and small breeding groups in white spruce.
    Beaulieu J; Doerksen TK; MacKay J; Rainville A; Bousquet J
    BMC Genomics; 2014 Dec; 15(1):1048. PubMed ID: 25442968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine.
    Cappa EP; Chen C; Klutsch JG; Sebastian-Azcona J; Ratcliffe B; Wei X; Da Ros L; Ullah A; Liu Y; Benowicz A; Sadoway S; Mansfield SD; Erbilgin N; Thomas BR; El-Kassaby YA
    BMC Genomics; 2022 Jul; 23(1):536. PubMed ID: 35870886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects.
    Gamal El-Dien O; Ratcliffe B; Klápště J; Porth I; Chen C; El-Kassaby YA
    G3 (Bethesda); 2016 Jan; 6(3):743-53. PubMed ID: 26801647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic selection for productive traits in biparental cassava breeding populations.
    Torres LG; Vilela de Resende MD; Azevedo CF; Fonseca E Silva F; de Oliveira EJ
    PLoS One; 2019; 14(7):e0220245. PubMed ID: 31344109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cassava yield traits predicted by genomic selection methods.
    Andrade LRB; Sousa MBE; Oliveira EJ; Resende MDV; Azevedo CF
    PLoS One; 2019; 14(11):e0224920. PubMed ID: 31725759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining pedigree and genomic information to improve prediction quality: an example in sorghum.
    Velazco JG; Malosetti M; Hunt CH; Mace ES; Jordan DR; van Eeuwijk FA
    Theor Appl Genet; 2019 Jul; 132(7):2055-2067. PubMed ID: 30968160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.