These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31263151)

  • 1. Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis.
    Xi X; Lu X; Zhang X; Bi Y; Li X; Yu Z
    J Antibiot (Tokyo); 2019 Oct; 72(10):736-743. PubMed ID: 31263151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus.
    Lang G; Kalvelage T; Peters A; Wiese J; Imhoff JF
    J Nat Prod; 2008 Jun; 71(6):1074-7. PubMed ID: 18491867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xentrivalpeptides A-Q: depsipeptide diversification in Xenorhabdus.
    Zhou Q; Dowling A; Heide H; Wöhnert J; Brandt U; Baum J; Ffrench-Constant R; Bode HB
    J Nat Prod; 2012 Oct; 75(10):1717-22. PubMed ID: 23025386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiparasitic chaiyaphumines from entomopathogenic Xenorhabdus sp. PB61.4.
    Grundmann F; Kaiser M; Schiell M; Batzer A; Kurz M; Thanwisai A; Chantratita N; Bode HB
    J Nat Prod; 2014 Apr; 77(4):779-83. PubMed ID: 24673206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Szentiamide, an N-formylated cyclic depsipeptide from Xenorhabdus szentirmaii DSM 16338T.
    Ohlendorf B; Simon S; Wiese J; Imhoff JF
    Nat Prod Commun; 2011 Sep; 6(9):1247-50. PubMed ID: 21941889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NRPS substrate promiscuity diversifies the xenematides.
    Crawford JM; Portmann C; Kontnik R; Walsh CT; Clardy J
    Org Lett; 2011 Oct; 13(19):5144-7. PubMed ID: 21888371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and biosynthesis of xenoamicins from entomopathogenic Xenorhabdus.
    Zhou Q; Grundmann F; Kaiser M; Schiell M; Gaudriault S; Batzer A; Kurz M; Bode HB
    Chemistry; 2013 Dec; 19(49):16772-9. PubMed ID: 24203528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhabdopeptides from Xenorhabdus budapestensis SN84 and Their Nematicidal Activities against Meloidogyne incognita.
    Bi Y; Gao C; Yu Z
    J Agric Food Chem; 2018 Apr; 66(15):3833-3839. PubMed ID: 29597344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Antimicrobial effect on some zoonotic bacteria, of the cell-free fermentation fluid and purified peptide fraction of the entomopathogenic bacterium, Xenorhabdus budapestensis].
    Burgettiné Böszörményi E; Barcs I; Domján G; Bélafiné Bakó K; Fodor A; Makrai L; Vozik D
    Orv Hetil; 2015 Nov; 156(44):1782-6. PubMed ID: 26498898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte,
    Li Y; Yu HB; Zhang Y; Leao T; Glukhov E; Pierce ML; Zhang C; Kim H; Mao HH; Fang F; Cottrell GW; Murray TF; Gerwick L; Guan H; Gerwick WH
    J Nat Prod; 2020 Mar; 83(3):617-625. PubMed ID: 31916778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxic cyclic depsipeptides from the Australian marine sponge Neamphius huxleyi.
    Tran TD; Pham NB; Fechner G; Zencak D; Vu HT; Hooper JN; Quinn RJ
    J Nat Prod; 2012 Dec; 75(12):2200-8. PubMed ID: 23215348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticancer activity of new depsipeptide compound isolated from an endophytic fungus.
    Verekar SA; Mishra PD; Sreekumar ES; Deshmukh SK; Fiebig HH; Kelter G; Maier A
    J Antibiot (Tokyo); 2014 Oct; 67(10):697-701. PubMed ID: 24824817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of taxlllaids A-G; natural products from Xenorhabdus indica.
    Kronenwerth M; Bozhüyük KA; Kahnt AS; Steinhilber D; Gaudriault S; Kaiser M; Bode HB
    Chemistry; 2014 Dec; 20(52):17478-87. PubMed ID: 25351611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila.
    Fuchs SW; Proschak A; Jaskolla TW; Karas M; Bode HB
    Org Biomol Chem; 2011 May; 9(9):3130-2. PubMed ID: 21423922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabclavines: bioactive peptide-polyketide-polyamino hybrids from Xenorhabdus.
    Fuchs SW; Grundmann F; Kurz M; Kaiser M; Bode HB
    Chembiochem; 2014 Mar; 15(4):512-6. PubMed ID: 24532262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and structures of pipecolidepsins A and B, cytotoxic cyclic depsipeptides from the Madagascan sponge Homophymia lamellosa.
    Coello L; Reyes F; Martín MJ; Cuevas C; Fernández R
    J Nat Prod; 2014 Feb; 77(2):298-303. PubMed ID: 24456064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-OHKF and NorKA, depsipeptides from a Hawaiian collection of Bryopsis pennata: binding properties for NorKA to the human neuropeptide Y Y1 receptor.
    Gao J; Caballero-George C; Wang B; Rao KV; Shilabin AG; Hamann MT
    J Nat Prod; 2009 Dec; 72(12):2172-6. PubMed ID: 19916528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemical study of cyclic depsipeptides produced by a sponge-derived fungus.
    Amagata T; Morinaka BI; Amagata A; Tenney K; Valeriote FA; Lobkovsky E; Clardy J; Crews P
    J Nat Prod; 2006 Nov; 69(11):1560-5. PubMed ID: 17125221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review.
    Booysen E; Dicks LMT
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1310-1320. PubMed ID: 32844362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two New Cyclic Depsipeptides from the Endophytic Fungus Fusarium sp.
    Lv F; Daletos G; Lin W; Proksch P
    Nat Prod Commun; 2015 Oct; 10(10):1667-70. PubMed ID: 26669100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.