These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31263230)

  • 41. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics.
    Krajewski WA; Li J; Dou Y
    Nucleic Acids Res; 2018 Sep; 46(15):7631-7642. PubMed ID: 29931239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal.
    Widlund HR; Vitolo JM; Thiriet C; Hayes JJ
    Biochemistry; 2000 Apr; 39(13):3835-41. PubMed ID: 10736184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands.
    Jackson V
    Biochemistry; 1988 Mar; 27(6):2109-20. PubMed ID: 3378048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cassette of basic amino acids in histone H2B regulates nucleosome dynamics and access to DNA damage.
    Rodriguez Y; Duan M; Wyrick JJ; Smerdon MJ
    J Biol Chem; 2018 May; 293(19):7376-7386. PubMed ID: 29588367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CpG dinucleotide positioning patterns determine the binding affinity of methyl-binding domain to nucleosomes.
    Mendonca A; Sanchez OF; Liu W; Li Z; Yuan C
    Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):713-720. PubMed ID: 28377300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Histone octamer transfer by a chromatin-remodeling complex.
    Lorch Y; Zhang M; Kornberg RD
    Cell; 1999 Feb; 96(3):389-92. PubMed ID: 10025404
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system.
    Yang Z; Hayes JJ
    Biochem Cell Biol; 2003 Jun; 81(3):177-84. PubMed ID: 12897852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification of yeast histones competent for nucleosome assembly in vitro.
    Fukuma M; Hiraoka Y; Sakurai H; Fukasawa T
    Yeast; 1994 Mar; 10(3):319-31. PubMed ID: 8017102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histone octamer helical tubes suggest that an internucleosomal four-helix bundle stabilizes the chromatin fiber.
    Frouws TD; Patterton HG; Sewell BT
    Biophys J; 2009 Apr; 96(8):3363-71. PubMed ID: 19383479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome.
    Lee KM; Hayes JJ
    Biochemistry; 1998 Jun; 37(24):8622-8. PubMed ID: 9628723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA binding within the nucleosome core.
    Luger K; Richmond TJ
    Curr Opin Struct Biol; 1998 Feb; 8(1):33-40. PubMed ID: 9519294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison between the CENP-A and histone H3 structures in nucleosomes.
    Tachiwana H; Kagawa W; Kurumizaka H
    Nucleus; 2012; 3(1):6-11. PubMed ID: 22127263
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brownian dynamics simulation of the effect of histone modification on nucleosome structure.
    Li W; Dou SX; Xie P; Wang PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051915. PubMed ID: 17677106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Linker histones: novel insights into structure-specific recognition of the nucleosome.
    Cutter AR; Hayes JJ
    Biochem Cell Biol; 2017 Apr; 95(2):171-178. PubMed ID: 28177778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Histone octamer dissociation is not required for transcript elongation through arrays of nucleosome cores by phage T7 RNA polymerase in vitro.
    O'Neill TE; Smith JG; Bradbury EM
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):6203-7. PubMed ID: 8327500
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer.
    Lee YT; Gibbons G; Lee SY; Nikolovska-Coleska Z; Dou Y
    Protein Expr Purif; 2015 Jun; 110():89-94. PubMed ID: 25687285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleosome Core Particles Lacking H2B or H3 Tails Are Altered Structurally and Have Differential Base Excision Repair Fingerprints.
    Caffrey PJ; Delaney S
    Biochemistry; 2021 Jan; 60(3):210-218. PubMed ID: 33426868
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Molecule Investigations on Histone H2A-H2B Dynamics in the Nucleosome.
    Lee J; Lee TH
    Biochemistry; 2017 Feb; 56(7):977-985. PubMed ID: 28128545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.