These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31263558)

  • 1. MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope.
    Liu T; Rajadhyaksha M; Dickensheets DL
    Light Sci Appl; 2019; 8():59. PubMed ID: 31263558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.
    Yin C; Glaser AK; Leigh SY; Chen Y; Wei L; Pillai PC; Rosenberg MC; Abeytunge S; Peterson G; Glazowski C; Sanai N; Mandella MJ; Rajadhyaksha M; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):251-63. PubMed ID: 26977337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging.
    Lan G; Mauger TF; Li G
    Biomed Opt Express; 2015 Sep; 6(9):3362-77. PubMed ID: 26417508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS-tunable dielectric metasurface lens.
    Arbabi E; Arbabi A; Kamali SM; Horie Y; Faraji-Dana M; Faraon A
    Nat Commun; 2018 Feb; 9(1):812. PubMed ID: 29476147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts.
    Ozbay BN; Losacco JT; Cormack R; Weir R; Bright VM; Gopinath JT; Restrepo D; Gibson EA
    Opt Lett; 2015 Jun; 40(11):2553-6. PubMed ID: 26030555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable immersion microscopy with a high numerical aperture.
    Ishida K; Naruse K; Mizouchi Y; Ogawa Y; Matsushita M; Shimi T; Kimura H; Fujiyoshi S
    Opt Lett; 2021 Feb; 46(4):856-859. PubMed ID: 33577531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Optical Diffraction Profiles Created by Phase-Modulating MEMS Micromirror Arrays.
    Mohammad T; He S; Mrad RB
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacitive Sensing for 2-D Electrostatic MEMS Scanner in a Clinical Endomicroscope.
    Lee M; Li H; Birla MB; Li G; Wang TD; Oldham KR
    IEEE Sens J; 2022 Dec; 22(24):24493-24503. PubMed ID: 37497077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple modulation of Lissajous MEMS laser beam scanning with reconfigurable structured light patterns for 3D imaging.
    Xu B; Ji Y; Xu C; Zhang B; Liu K; Li J
    Opt Express; 2024 Apr; 32(8):13249-13265. PubMed ID: 38859300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-Immersible MEMS Mirror with a Large Optical Aperture.
    Yang Y; Liu Y; Su Y; Wang Y; Zhang Y; Chen H; Wang L; Wu Z
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MEMS-based portable confocal Raman spectroscopy rapid imaging system.
    Zhang G; Wang X; Zheng D; Cui H; Wang Y
    Appl Opt; 2023 Nov; 62(33):8724-8731. PubMed ID: 38038017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Pixel MEMS Imaging Systems.
    Zhou G; Lim ZH; Qi Y; Zhou G
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lissajous MEMS laser beam scanner with uniform and high fill-factor projection for augmented reality display.
    Xu B; Xu C; Ji Y; Zhang B; Li J
    Opt Express; 2023 Oct; 31(21):35164-35177. PubMed ID: 37859254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of GRIN-lens-based in-line digital holographic microscopy to automatic detection and localization of particles released from a MEMS device.
    Khorshad AA; Devaney N; Houlihan R
    Appl Opt; 2024 Mar; 63(7):B93-B103. PubMed ID: 38437260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through a MEMS scanning mirror.
    Yang H; Xi L; Samuelson S; Xie H; Yang L; Jiang H
    Biomed Opt Express; 2013 Mar; 4(3):427-32. PubMed ID: 23504287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard X-ray wavefront correction via refractive phase plates made by additive and subtractive fabrication techniques.
    Seiboth F; Brückner D; Kahnt M; Lyubomirskiy M; Wittwer F; Dzhigaev D; Ullsperger T; Nolte S; Koch F; David C; Garrevoet J; Falkenberg G; Schroer CG
    J Synchrotron Radiat; 2020 Sep; 27(Pt 5):1121-1130. PubMed ID: 32876586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote focusing optical tweezers for 3D imaging.
    Zheng TT; Tian Y; Jiang Y; Liu C; Hua Z
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38270502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflective multi-immersion microscope objectives inspired by the Schmidt telescope.
    Voigt FF; Reuss AM; Naert T; Hildebrand S; Schaettin M; Hotz AL; Whitehead L; Bahl A; Neuhauss SCF; Roebroeck A; Stoeckli ET; Lienkamp SS; Aguzzi A; Helmchen F
    Nat Biotechnol; 2024 Jan; 42(1):65-71. PubMed ID: 36997681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field curvature reduction in miniaturized high numerical aperture and large field-of-view objective lenses with sub 1 µm lateral resolution.
    Stark SL; Gross H; Reglinski K; Messerschmidt B; Eggeling C
    Biomed Opt Express; 2023 Dec; 14(12):6190-6205. PubMed ID: 38420300
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.