These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31263558)

  • 21. A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope.
    Trägårdh J; Macrae K; Travis C; Amor R; Norris G; Wilson SH; Oppo GL; McConnell G
    J Microsc; 2015 Jul; 259(1):66-73. PubMed ID: 25864964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts.
    Ozbay BN; Losacco JT; Cormack R; Weir R; Bright VM; Gopinath JT; Restrepo D; Gibson EA
    Opt Lett; 2015 Jun; 40(11):2553-6. PubMed ID: 26030555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging.
    Yu X; Zhou L; Qi T; Zhao H; Xie H
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging.
    Chen WT; Zhu AY; Khorasaninejad M; Shi Z; Sanjeev V; Capasso F
    Nano Lett; 2017 May; 17(5):3188-3194. PubMed ID: 28388086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope.
    Liang C; Sung KB; Richards-Kortum RR; Descour MR
    Appl Opt; 2002 Aug; 41(22):4603-10. PubMed ID: 12153093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MEMS scanning micromirror for optical coherence tomography.
    Strathman M; Liu Y; Keeler EG; Song M; Baran U; Xi J; Sun MT; Wang R; Li X; Lin LY
    Biomed Opt Express; 2015 Jan; 6(1):211-24. PubMed ID: 25657887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Handheld laser scanning microscope catheter for real-time and
    Jeon J; Kim H; Jang H; Hwang K; Kim K; Park YG; Jeong KH
    Biomed Opt Express; 2022 Mar; 13(3):1497-1505. PubMed ID: 35414975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens.
    Shin HJ; Pierce MC; Lee D; Ra H; Solgaard O; Richards-Kortum R
    Opt Express; 2007 Jul; 15(15):9113-22. PubMed ID: 19547251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.
    Lee SL; Yang CF
    Opt Express; 2008 Nov; 16(24):19995-20007. PubMed ID: 19030086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-MEMS Lidar Using Hybrid Optical Architecture with Digital Micromirror Devices and a 2D-MEMS Mirror.
    Kang E; Choi H; Hellman B; Rodriguez J; Smith B; Deng X; Liu P; Lee TL; Evans E; Hong Y; Guan J; Luo C; Takashima Y
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wide-field imaging combined with confocal microscopy using a miniature f/5 camera integrated within a high NA objective lens.
    Dickensheets DL; Kreitinger S; Peterson G; Heger M; Rajadhyaksha M
    Opt Lett; 2017 Apr; 42(7):1241-1244. PubMed ID: 28362739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments.
    Escobar I; Saavedra G; Martínez-Corral M; Lancis J
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3150-5. PubMed ID: 17106470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of spherical and chromatic aberration in axial-scanning optical systems with tunable lenses.
    Strother JA
    Biomed Opt Express; 2021 Jun; 12(6):3530-3552. PubMed ID: 34221677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution microspectrometer with an aberration-correcting planar grating.
    Grabarnik S; Emadi A; Wu H; de Graaf G; Wolffenbuttel RF
    Appl Opt; 2008 Dec; 47(34):6442-7. PubMed ID: 19037373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy.
    Chidley MD; Carlson KD; Richards-Kortum RR; Descour MR
    Appl Opt; 2006 Apr; 45(11):2545-54. PubMed ID: 16623254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MEMS enabled miniaturized light-sheet microscopy with all optical control.
    Bakas S; Uttamchandani D; Toshiyoshi H; Bauer R
    Sci Rep; 2021 Jul; 11(1):14100. PubMed ID: 34238945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope.
    Chung HY; Kuo WC; Cheng YH; Yu CH; Chia SH; Lin CY; Chen JS; Tsai HJ; Fedotov AB; Ivanov AA; Zheltikov AM; Sun CK
    Opt Express; 2013 Dec; 21(25):31604-14. PubMed ID: 24514733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Technological Platform for Vertical Multi-Wafer Integration of Microscanners and Micro-Optical Components.
    Bargiel S; Baranski M; Wiemer M; Frömel J; Wang WS; Gorecki C
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30871213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Miniaturized structured illumination microscopy using two 3-axis MEMS micromirrors.
    Tinning P; Donnachie M; Christopher J; Uttamchandani D; Bauer R
    Biomed Opt Express; 2022 Dec; 13(12):6443-6456. PubMed ID: 36589569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.