These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3126407)

  • 1. Hepatic and renal contributions to valproic acid-induced hyperammonemia.
    Marini AM; Zaret BS; Beckner RR
    Neurology; 1988 Mar; 38(3):365-71. PubMed ID: 3126407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium valproate-induced hyperammonemia in the rat: role of the kidney.
    Warter JM; Imler M; Marescaux C; Chabrier G; Rumbach L; Micheletti G; Krieger J
    Eur J Pharmacol; 1983 Feb; 87(2-3):177-82. PubMed ID: 6404641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failure of the normal ureagenic response to amino acids in organic acid-loaded rats. Proposed mechanism for the hyperammonemia of propionic and methylmalonic acidemia.
    Stewart PM; Walser M
    J Clin Invest; 1980 Sep; 66(3):484-92. PubMed ID: 7400325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valproate-induced hyperammonemia of renal origin. Effects of valproate on glutamine transport in rat kidney mitochondria.
    Rumbach L; Cremel G; Marescaux C; Warter JM; Waksman A
    Biochem Pharmacol; 1989 Nov; 38(22):3963-7. PubMed ID: 2512930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights on the mechanisms of valproate-induced hyperammonemia: inhibition of hepatic N-acetylglutamate synthase activity by valproyl-CoA.
    Aires CC; van Cruchten A; Ijlst L; de Almeida IT; Duran M; Wanders RJ; Silva MF
    J Hepatol; 2011 Aug; 55(2):426-34. PubMed ID: 21147182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valproate-induced hyperammonemia.
    Batshaw ML; Brusilow SW
    Ann Neurol; 1982 Mar; 11(3):319-21. PubMed ID: 6807193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CPS1 T1405N polymorphism, HDL cholesterol, homocysteine and renal function are risk factors of VPA induced hyperammonemia among epilepsy patients.
    Chen L; Tian Q; Zhang M; Chen D; Gao X; Yang H; Li H; Li C; Wen J; Li Y; Tian X; Chen P
    Epilepsy Res; 2019 Aug; 154():139-143. PubMed ID: 31151073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The early effects of valproic acid in low doses in liver metabolism.
    Culebras M; Doval M; Rengel M; López-Novoa JM
    Rev Esp Fisiol; 1989 Dec; 45(4):327-30. PubMed ID: 2517150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of glutamine synthetase gene polymorphisms on the development of hyperammonemia during valproic acid-based therapy.
    Inoue K; Takahashi T; Yamamoto Y; Suzuki E; Takahashi Y; Imai K; Inoue Y; Hirai K; Tsuji D; Itoh K
    Seizure; 2015 Dec; 33():76-80. PubMed ID: 26599579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4217C>A polymorphism in carbamoyl-phosphate synthase 1 gene may not associate with hyperammonemia development during valproic acid-based therapy.
    Inoue K; Suzuki E; Takahashi T; Yamamoto Y; Yazawa R; Takahashi Y; Imai K; Miyakawa K; Inoue Y; Tsuji D; Hayashi H; Itoh K
    Epilepsy Res; 2014 Aug; 108(6):1046-51. PubMed ID: 24888247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valproic acid and secondary hyperammonemia.
    Rawat S; Borkowski WJ; Swick HM
    Neurology; 1981 Sep; 31(9):1173-4. PubMed ID: 6791053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of CPS14217C>A genotype on valproic-acid-induced hyperammonemia.
    Yagi M; Nakamura T; Okizuka Y; Oyazato Y; Kawasaki Y; Tsuneishi S; Sakaeda T; Matsuo M; Okumura K; Okamura N
    Pediatr Int; 2010 Oct; 52(5):744-8. PubMed ID: 20456087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperammonemia following intravenous valproate loading.
    DeWolfe JL; Knowlton RC; Beasley MT; Cofield S; Faught E; Limdi NA
    Epilepsy Res; 2009 Jul; 85(1):65-71. PubMed ID: 19299111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of hepatic ammonia metabolism after chronic valproate administration in epileptics treated with phenytoin.
    Marescaux C; Warter JM; Brandt C; Rumbach L; Micheletti G; Chabrier G; Imler M
    Eur Neurol; 1985; 24(3):191-5. PubMed ID: 3922765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of valproate, sodium 2-propyl-4-pentenoate and sodium 2-propyl-2-pentenoate on renal substrate uptake and ammoniagenesis in the rat.
    Elhamri M; Ferrier B; Martin M; Baverel G
    J Pharmacol Exp Ther; 1993 Jul; 266(1):89-96. PubMed ID: 8331578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of hyperammonemia with carbamylglutamate in rats.
    Grau E; Felipo V; Miñana MD; Grisolía S
    Hepatology; 1992 Mar; 15(3):446-8. PubMed ID: 1544625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of hyperammonemia in stuporous states induced by sodium valproate].
    Warter JM; Marescaux C; Rumbach L; Micheletti G; Chabrier G; Koehl C; Imler M; Collard M
    Rev Neurol (Paris); 1983; 139(12):753-7. PubMed ID: 6420866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium valproate-induced hyperammonemia without clinical hepatic dysfunction.
    Zaret BS; Beckner RR; Marini AM; Wagle W; Passarelli C
    Neurology; 1982 Feb; 32(2):206-8. PubMed ID: 6798491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hyperammonemia in valproate therapy in children and adolescents].
    Laub MC
    Nervenarzt; 1986 May; 57(5):314-8. PubMed ID: 3088461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbamyl phosphate synthetase-1 deficiency discovered after valproic acid-induced coma.
    Verbiest HB; Straver JS; Colombo JP; van der Vijver JC; van Woerkom TC
    Acta Neurol Scand; 1992 Sep; 86(3):275-9. PubMed ID: 1414247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.