BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31264414)

  • 1. pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties.
    Zhong D; Jiang Y; Zhao Z; Wang L; Chen J; Ren S; Liu Z; Zhang Y; Tsang DCW; Crittenden JC
    Environ Sci Technol; 2019 Aug; 53(15):9034-9044. PubMed ID: 31264414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-enhanced oxidation of arsenite by biochar: The effect of pH, kinetics and mechanisms.
    You T; Wang S; Xi Y; Yao S; Yan Z; Ding Y; Li Y; Zeng X; Jia Y
    J Hazard Mater; 2024 Jan; 461():132652. PubMed ID: 37793254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence.
    Pi K; Markelova E; Zhang P; Van Cappellen P
    Environ Sci Technol; 2019 Sep; 53(18):10897-10905. PubMed ID: 31419125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation.
    Xu Z; Wan Z; Sun Y; Gao B; Hou D; Cao X; Komárek M; Ok YS; Tsang DCW
    J Hazard Mater; 2022 May; 430():128479. PubMed ID: 35739664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca
    Zhong D; Zhao Z; Jiang Y; Yang X; Wang L; Chen J; Guan CY; Zhang Y; Tsang DCW; Crittenden JC
    Water Res; 2020 Sep; 183():116106. PubMed ID: 32771717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active MnO
    Cuong DV; Wu PC; Chen LI; Hou CH
    Water Res; 2021 Jan; 188():116495. PubMed ID: 33065416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice husk-derived biochar can aggravate arsenic mobility in ferrous-rich groundwater during oxygenation.
    Zhong D; Ren S; Dong X; Yang X; Wang L; Chen J; Zhao Z; Zhang Y; Tsang DCW; Crittenden JC
    Water Res; 2021 Jul; 200():117264. PubMed ID: 34082262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone.
    Jiang J; Bauer I; Paul A; Kappler A
    Environ Sci Technol; 2009 May; 43(10):3639-45. PubMed ID: 19544866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid As(III) oxidation mediated by activated carbons: Reactive species vs. direct oxidation.
    Zhu C; Xue C; Huang M; Zhu F; Fang G; Wang D; Liu S; Chen N; Wu S; Zhou D
    Sci Total Environ; 2022 May; 822():153536. PubMed ID: 35104530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation.
    Fang G; Gao J; Liu C; Dionysiou DD; Wang Y; Zhou D
    Environ Sci Technol; 2014; 48(3):1902-10. PubMed ID: 24422431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemistry of biochar during ageing process: Reactive oxygen species generation and benzoic acid degradation.
    Zhang K; Sun P; Khan A; Zhang Y
    Sci Total Environ; 2021 Apr; 765():144630. PubMed ID: 33385810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: Enhanced mobility of arsenic.
    Kim HB; Kim JG; Choi JH; Kwon EE; Baek K
    Sci Total Environ; 2019 Nov; 689():1037-1043. PubMed ID: 31466144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe
    Zhong D; Zhang Y; Wang L; Chen J; Jiang Y; Tsang DCW; Zhao Z; Ren S; Liu Z; Crittenden JC
    Environ Pollut; 2018 Dec; 243(Pt B):1302-1309. PubMed ID: 30268980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The removal of arsenic from solution through biochar-enhanced precipitation of calcium-arsenic derivatives.
    Zama EF; Li G; Tang YT; Reid BJ; Ngwabie NM; Sun GX
    Environ Pollut; 2022 Jan; 292(Pt A):118241. PubMed ID: 34582918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions.
    El-Naggar A; Shaheen SM; Hseu ZY; Wang SL; Ok YS; Rinklebe J
    Sci Total Environ; 2019 Mar; 657():686-695. PubMed ID: 30677934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar.
    Navarathna CM; Karunanayake AG; Gunatilake SR; Pittman CU; Perez F; Mohan D; Mlsna T
    J Environ Manage; 2019 Nov; 250():109429. PubMed ID: 31491719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.