These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31264420)
1. Random Forest Refinement of Pairwise Potentials for Protein-Ligand Decoy Detection. Pei J; Zheng Z; Kim H; Song LF; Walworth S; Merz MR; Merz KM J Chem Inf Model; 2019 Jul; 59(7):3305-3315. PubMed ID: 31264420 [TBL] [Abstract][Full Text] [Related]
2. Pair Potentials as Machine Learning Features. Pei J; Song LF; Merz KM J Chem Theory Comput; 2020 Aug; 16(8):5385-5400. PubMed ID: 32559380 [TBL] [Abstract][Full Text] [Related]
3. Random Forest Refinement of the KECSA2 Knowledge-Based Scoring Function for Protein Decoy Detection. Pei J; Zheng Z; Merz KM J Chem Inf Model; 2019 May; 59(5):1919-1929. PubMed ID: 30726079 [TBL] [Abstract][Full Text] [Related]
4. FFENCODER-PL: Pair Wise Energy Descriptors for Protein-Ligand Pose Selection. Pei J; Song LF; Merz KM J Chem Theory Comput; 2021 Oct; 17(10):6647-6657. PubMed ID: 34553938 [TBL] [Abstract][Full Text] [Related]
6. Refinement of pairwise potentials via logistic regression to score protein-protein interactions. Tanemura KA; Pei J; Merz KM Proteins; 2020 Dec; 88(12):1559-1568. PubMed ID: 32729132 [TBL] [Abstract][Full Text] [Related]
7. Boosted neural networks scoring functions for accurate ligand docking and ranking. Ashtawy HM; Mahapatra NR J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922 [TBL] [Abstract][Full Text] [Related]
8. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark. Fourches D; Politi R; Tropsha A J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713 [TBL] [Abstract][Full Text] [Related]
9. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. Wang C; Zhang Y J Comput Chem; 2017 Jan; 38(3):169-177. PubMed ID: 27859414 [TBL] [Abstract][Full Text] [Related]
10. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set? Su M; Feng G; Liu Z; Li Y; Wang R J Chem Inf Model; 2020 Mar; 60(3):1122-1136. PubMed ID: 32085675 [TBL] [Abstract][Full Text] [Related]
11. Are predefined decoy sets of ligand poses able to quantify scoring function accuracy? Korb O; Ten Brink T; Victor Paul Raj FR; Keil M; Exner TE J Comput Aided Mol Des; 2012 Feb; 26(2):185-97. PubMed ID: 22231069 [TBL] [Abstract][Full Text] [Related]
12. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Ballester PJ; Mitchell JB Bioinformatics; 2010 May; 26(9):1169-75. PubMed ID: 20236947 [TBL] [Abstract][Full Text] [Related]
13. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. Li H; Leung KS; Wong MH; Ballester PJ BMC Bioinformatics; 2014 Aug; 15(1):291. PubMed ID: 25159129 [TBL] [Abstract][Full Text] [Related]
14. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures. Bao J; He X; Zhang JZH J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150 [TBL] [Abstract][Full Text] [Related]
15. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522 [TBL] [Abstract][Full Text] [Related]
16. Learning from the ligand: using ligand-based features to improve binding affinity prediction. Boyles F; Deane CM; Morris GM Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630 [TBL] [Abstract][Full Text] [Related]