These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 31264420)
21. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions. Li Y; Yang J J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210 [TBL] [Abstract][Full Text] [Related]
22. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design. Bordner AJ BMC Bioinformatics; 2010 Apr; 11():192. PubMed ID: 20398384 [TBL] [Abstract][Full Text] [Related]
23. Development of a New Scoring Function for Virtual Screening: APBScore. Bao J; He X; Zhang JZH J Chem Inf Model; 2020 Dec; 60(12):6355-6365. PubMed ID: 33052694 [TBL] [Abstract][Full Text] [Related]
24. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data. Li H; Peng J; Sidorov P; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ Bioinformatics; 2019 Oct; 35(20):3989-3995. PubMed ID: 30873528 [TBL] [Abstract][Full Text] [Related]
25. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. Velec HF; Gohlke H; Klebe G J Med Chem; 2005 Oct; 48(20):6296-303. PubMed ID: 16190756 [TBL] [Abstract][Full Text] [Related]
26. A D3R prospective evaluation of machine learning for protein-ligand scoring. Sunseri J; Ragoza M; Collins J; Koes DR J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011 [TBL] [Abstract][Full Text] [Related]
27. Improving the binding affinity estimations of protein-ligand complexes using machine-learning facilitated force field method. Soni A; Bhat R; Jayaram B J Comput Aided Mol Des; 2020 Aug; 34(8):817-830. PubMed ID: 32185583 [TBL] [Abstract][Full Text] [Related]
28. Native fold and docking pose discrimination by the same residue-based scoring function. Sarti E; Granata D; Seno F; Trovato A; Laio A Proteins; 2015 Apr; 83(4):621-30. PubMed ID: 25619680 [TBL] [Abstract][Full Text] [Related]
29. Investigating the importance of Delaunay-based definition of atomic interactions in scoring of protein-protein docking results. Jafari R; Sadeghi M; Mirzaie M J Mol Graph Model; 2016 May; 66():108-14. PubMed ID: 27060891 [TBL] [Abstract][Full Text] [Related]
30. Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions. Ruvinsky AM J Comput Chem; 2007 Jun; 28(8):1364-72. PubMed ID: 17342720 [TBL] [Abstract][Full Text] [Related]
31. Integrating Bonded and Nonbonded Potentials in the Knowledge-Based Scoring Function for Protein Structure Prediction. Wang X; Huang SY J Chem Inf Model; 2019 Jun; 59(6):3080-3090. PubMed ID: 31045366 [TBL] [Abstract][Full Text] [Related]
32. Novel nonlinear knowledge-based mean force potentials based on machine learning. Dong Q; Zhou S IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):476-86. PubMed ID: 20820079 [TBL] [Abstract][Full Text] [Related]
33. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning. Ahalawat N; Sahil M; Mondal J J Chem Theory Comput; 2023 May; 19(9):2644-2657. PubMed ID: 37068044 [TBL] [Abstract][Full Text] [Related]
34. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking. Baek M; Shin WH; Chung HW; Seok C J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486 [TBL] [Abstract][Full Text] [Related]
35. The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction. Nogueira MS; Koch O J Chem Inf Model; 2019 Mar; 59(3):1238-1252. PubMed ID: 30802041 [TBL] [Abstract][Full Text] [Related]
36. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Yan Z; Wang J Proteins; 2015 Sep; 83(9):1632-42. PubMed ID: 26111900 [TBL] [Abstract][Full Text] [Related]
37. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment. Ashtawy HM; Mahapatra NR J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087 [TBL] [Abstract][Full Text] [Related]
38. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. Ashtawy HM; Mahapatra NR BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860 [TBL] [Abstract][Full Text] [Related]
39. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction. Chae MH; Krull F; Knapp EW Proteins; 2015 May; 83(5):881-90. PubMed ID: 25693513 [TBL] [Abstract][Full Text] [Related]
40. Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark. Li H; Lu G; Sze KH; Su X; Chan WY; Leung KS Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34169324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]