BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31264582)

  • 1. The Makorin
    Lawson H; Vuong E; Miller RM; Kiontke K; Fitch DH; Portman DS
    Elife; 2019 Jul; 8():. PubMed ID: 31264582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans.
    Herrera RA; Kiontke K; Fitch DH
    Development; 2016 Mar; 143(5):799-809. PubMed ID: 26811380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Long Non-Coding RNA lep-5 Promotes the Juvenile-to-Adult Transition by Destabilizing LIN-28.
    Kiontke KC; Herrera RA; Vuong E; Luo J; Schwarz EM; Fitch DHA; Portman DS
    Dev Cell; 2019 May; 49(4):542-555.e9. PubMed ID: 30956008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stage-Specific Timing of the microRNA Regulation of lin-28 by the Heterochronic Gene lin-14 in Caenorhabditis elegans.
    Tsialikas J; Romens MA; Abbott A; Moss EG
    Genetics; 2017 Jan; 205(1):251-262. PubMed ID: 27815363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sjögren Syndrome antigen B regulates LIN28-let-7 axis in Caenorhabditis elegans and human.
    Kim SH; Park BO; Kim K; Park BC; Park SG; Kim JH; Kim S
    Biochim Biophys Acta Gene Regul Mech; 2021 Mar; 1864(3):194684. PubMed ID: 33484878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans.
    Van Wynsberghe PM; Kai ZS; Massirer KB; Burton VH; Yeo GW; Pasquinelli AE
    Nat Struct Mol Biol; 2011 Mar; 18(3):302-8. PubMed ID: 21297634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. lin-28 controls the succession of cell fate choices via two distinct activities.
    Vadla B; Kemper K; Alaimo J; Heine C; Moss EG
    PLoS Genet; 2012; 8(3):e1002588. PubMed ID: 22457637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAB-10/NAB acts with LIN-29/EGR to regulate terminal differentiation and the transition from larva to adult in C. elegans.
    Harris DT; Horvitz HR
    Development; 2011 Sep; 138(18):4051-62. PubMed ID: 21862562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing mechanism of sexually dimorphic nervous system differentiation.
    Pereira L; Aeschimann F; Wang C; Lawson H; Serrano-Saiz E; Portman DS; Großhans H; Hobert O
    Elife; 2019 Jan; 8():. PubMed ID: 30599092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system.
    Esquela-Kerscher A; Johnson SM; Bai L; Saito K; Partridge J; Reinert KL; Slack FJ
    Dev Dyn; 2005 Dec; 234(4):868-77. PubMed ID: 16217741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of PRY-1/Axin in heterochronic miRNA-mediated seam cell development.
    Mallick A; Ranawade A; Gupta BP
    BMC Dev Biol; 2019 Jul; 19(1):17. PubMed ID: 31307392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of microRNAs in the Caenorhabditis elegans nervous system.
    Meng L; Chen L; Li Z; Wu ZX; Shan G
    J Genet Genomics; 2013 Sep; 40(9):445-52. PubMed ID: 24053946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites.
    Moss EG; Tang L
    Dev Biol; 2003 Jun; 258(2):432-42. PubMed ID: 12798299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs.
    Abrahante JE; Daul AL; Li M; Volk ML; Tennessen JM; Miller EA; Rougvie AE
    Dev Cell; 2003 May; 4(5):625-37. PubMed ID: 12737799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans.
    Lehrbach NJ; Armisen J; Lightfoot HL; Murfitt KJ; Bugaut A; Balasubramanian S; Miska EA
    Nat Struct Mol Biol; 2009 Oct; 16(10):1016-20. PubMed ID: 19713957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system.
    Amon S; Gupta BP
    Dev Biol; 2017 Apr; 424(1):90-103. PubMed ID: 28215941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Doubletime Homolog
    Rhodehouse K; Cascino K; Aseltine L; Padula A; Weinstein R; Spina JS; Olivero CE; Van Wynsberghe PM
    G3 (Bethesda); 2018 Jul; 8(8):2617-2629. PubMed ID: 29880558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel gain-of-function alleles demonstrate a role for the heterochronic gene lin-41 in C. elegans male tail tip morphogenesis.
    Del Rio-Albrechtsen T; Kiontke K; Chiou SY; Fitch DH
    Dev Biol; 2006 Sep; 297(1):74-86. PubMed ID: 16806150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory mutations of mir-48, a C. elegans let-7 family MicroRNA, cause developmental timing defects.
    Li M; Jones-Rhoades MW; Lau NC; Bartel DP; Rougvie AE
    Dev Cell; 2005 Sep; 9(3):415-22. PubMed ID: 16139229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C. elegans LIN-28 controls temporal cell fate progression by regulating LIN-46 expression via the 5' UTR of lin-46 mRNA.
    Ilbay O; Nelson C; Ambros V
    Cell Rep; 2021 Sep; 36(10):109670. PubMed ID: 34496246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.