BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31264599)

  • 1. Amending Ongoing Upper-Limb Reaches: Visual and Proprioceptive Contributions?
    Goodman R; Crainic VA; Bested SR; Wijeyaratnam DO; de Grosbois J; Tremblay L
    Multisens Res; 2018 Jan; 31(5):455-480. PubMed ID: 31264599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using proprioception to control ongoing actions: dominance of vision or altered proprioceptive weighing?
    Goodman R; Tremblay L
    Exp Brain Res; 2018 Jul; 236(7):1897-1910. PubMed ID: 29696313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of exercise-induced fatigue versus intertrial tendon vibration on visual-proprioceptive weighting for goal-directed movement.
    Manzone DM; Tremblay L
    J Neurophysiol; 2020 Sep; 124(3):802-814. PubMed ID: 32755335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy instructions differently modulate visual and nonvisual contributions to ongoing reaches.
    de Grosbois J; Jovanov K; Tremblay L
    Can J Exp Psychol; 2019 Sep; 73(3):167-178. PubMed ID: 30802077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Online Corrections for Proprioceptive and Visual Perturbations Recruit Similar Circuits in Primary Motor Cortex.
    Cross KP; Cook DJ; Scott SH
    eNeuro; 2024 Feb; 11(2):. PubMed ID: 38238081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Neck Muscle Afferentation to Control an Ongoing Limb Movement? Individual Differences in the Influence of Brief Neck Vibration.
    Alekhina M; Perkic G; Manson GA; Blouin J; Tremblay L
    Brain Sci; 2023 Oct; 13(10):. PubMed ID: 37891776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sense of effort revisited: relative contributions of sensory feedback and efferent copy.
    Scotland S; Adamo DE; Martin BJ
    Neurosci Lett; 2014 Feb; 561():208-12. PubMed ID: 24373991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putting proprioception for balance to the test: Contrasting and combining sway referencing and tendon vibration.
    Doumas M; Valkanidis TC; Hatzitaki V
    Gait Posture; 2019 Jan; 67():201-206. PubMed ID: 30368206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural foundations of handedness: insights from a rare case of deafferentation.
    Jayasinghe SAL; Sarlegna FR; Scheidt RA; Sainburg RL
    J Neurophysiol; 2020 Jul; 124(1):259-267. PubMed ID: 32579409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimal velocity for online limb-target regulation processes?
    Tremblay L; Crainic VA; de Grosbois J; Bhattacharjee A; Kennedy A; Hansen S; Welsh TN
    Exp Brain Res; 2017 Jan; 235(1):29-40. PubMed ID: 27618816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proprioceptive consequences of tendon vibration during movement.
    Cordo P; Gurfinkel VS; Bevan L; Kerr GK
    J Neurophysiol; 1995 Oct; 74(4):1675-88. PubMed ID: 8989404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of proprioceptive training on multisensory perception under visual uncertainty.
    Saidi M; Towhidkhah F; Lagzi F; Gharibzadeh S
    J Integr Neurosci; 2012 Dec; 11(4):401-15. PubMed ID: 23351049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.
    Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP
    Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory Prediction of Limb Movement Is Critical for Automatic Online Control.
    Priot AE; Revol P; Sillan O; Prablanc C; Gaveau V
    Front Hum Neurosci; 2020; 14():549537. PubMed ID: 33132873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The specificity of practice hypothesis in goal-directed movements: visual dominance or proprioception neglect?
    Toussaint L; Meugnot A; Badets A; Chesnet D; Proteau L
    Psychol Res; 2017 Mar; 81(2):407-414. PubMed ID: 26873383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrotactile information improves proprioceptive reaching target localization.
    Mikula L; Sahnoun S; Pisella L; Blohm G; Khan AZ
    PLoS One; 2018; 13(7):e0199627. PubMed ID: 29979697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.