These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 31264599)

  • 41. Proprioceptive guidance of human voluntary wrist movements studied using muscle vibration.
    Cody FW; Schwartz MP; Smit GP
    J Physiol; 1990 Aug; 427():455-70. PubMed ID: 2213604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Online movement control in multiple sclerosis patients with tremor: effects of tendon vibration.
    Feys P; Helsen WF; Verschueren S; Swinnen SP; Klok I; Lavrysen A; Nuttin B; Ketelaer P; Liu X
    Mov Disord; 2006 Aug; 21(8):1148-53. PubMed ID: 16700031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anchoring the "floating arm": Use of proprioceptive and mirror visual feedback from one arm to control involuntary displacement of the other arm.
    Brun C; Guerraz M
    Neuroscience; 2015 Dec; 310():268-78. PubMed ID: 26415771
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Upper limb asymmetries in the matching of proprioceptive versus visual targets.
    Goble DJ; Brown SH
    J Neurophysiol; 2008 Jun; 99(6):3063-74. PubMed ID: 18436632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proprioceptive deficits in Parkinson's disease patients with freezing of gait.
    Tan T; Almeida QJ; Rahimi F
    Neuroscience; 2011 Sep; 192():746-52. PubMed ID: 21745543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Motor adaptation and proprioceptive recalibration.
    Cressman EK; Henriques DY
    Prog Brain Res; 2011; 191():91-9. PubMed ID: 21741546
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Online visual cues can compensate for deficits in cutaneous feedback from the dorsal ankle joint for the trailing limb but not the leading limb during obstacle crossing.
    Howe EE; Toth AJ; Bent LR
    Exp Brain Res; 2018 Nov; 236(11):2887-2898. PubMed ID: 30073386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements.
    Kitchen NM; Miall RC
    Exp Brain Res; 2019 Feb; 237(2):531-545. PubMed ID: 30478636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proprioceptive population coding of two-dimensional limb movements in humans: I. Muscle spindle feedback during spatially oriented movements.
    Bergenheim M; Ribot-Ciscar E; Roll JP
    Exp Brain Res; 2000 Oct; 134(3):301-10. PubMed ID: 11045355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions between visual and muscular information in illusions of limb movement.
    Tardy-Gervet MF; Gilhodes JC; Roll JP
    Behav Brain Res; 1986 May; 20(2):161-74. PubMed ID: 3730131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Balancing sensory inputs: Sensory reweighting of ankle proprioception and vision during a bipedal posture task.
    Kabbaligere R; Lee BC; Layne CS
    Gait Posture; 2017 Feb; 52():244-250. PubMed ID: 27978501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Muscular proprioception contributes to the control of interceptive actions.
    Bastin J; Calvin S; Montagne G
    J Exp Psychol Hum Percept Perform; 2006 Aug; 32(4):964-72. PubMed ID: 16846291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensory training with vibration-induced kinesthetic illusions improves proprioceptive integration in patients with Parkinson's disease.
    Ribot-Ciscar E; Aimonetti JM; Azulay JP
    J Neurol Sci; 2017 Dec; 383():161-165. PubMed ID: 29246606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets.
    Bernier PM; Gauthier GM; Blouin J
    J Neurophysiol; 2007 Sep; 98(3):1815-9. PubMed ID: 17634334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A central processing sensory deficit with Parkinson's disease.
    Hwang S; Agada P; Grill S; Kiemel T; Jeka JJ
    Exp Brain Res; 2016 Aug; 234(8):2369-79. PubMed ID: 27059036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brain-actuated gait trainer with visual and proprioceptive feedback.
    Liu D; Chen W; Lee K; Chavarriaga R; Bouri M; Pei Z; Del R Millán J
    J Neural Eng; 2017 Oct; 14(5):056017. PubMed ID: 28696340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Motor and sensory disturbances induced by sensorimotor conflicts during passive and active movements in healthy participants.
    Brun C; Gagné M; McCabe CS; Mercier C
    PLoS One; 2018; 13(8):e0203206. PubMed ID: 30157264
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relative contributions of spatial weighting, explicit knowledge and proprioception to hand localisation during positional ambiguity.
    Bellan V; Gilpin HR; Stanton TR; Dagsdóttir LK; Gallace A; Lorimer Moseley G
    Exp Brain Res; 2017 Feb; 235(2):447-455. PubMed ID: 27778047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.