These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31264714)

  • 1. Medial epithelial seam cell migration during palatal fusion.
    Logan SM; Benson MD
    J Cell Physiol; 2020 Feb; 235(2):1417-1424. PubMed ID: 31264714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ephrin reverse signaling mediates palatal fusion and epithelial-to-mesenchymal transition independently of Tgfß3.
    Serrano MJ; Liu J; Svoboda KK; Nawshad A; Benson MD
    J Cell Physiol; 2015 Dec; 230(12):2961-72. PubMed ID: 25893671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of an in vitro palate nonfusion model using interposed embryonic mesenchyme.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Peled ZM; Longaker MT
    Plast Reconstr Surg; 2002 Jun; 109(7):2363-72. PubMed ID: 12045564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis.
    Cuervo R; Covarrubias L
    Development; 2004 Jan; 131(1):15-24. PubMed ID: 14645125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of cleft palate in TGF-beta3 knockout mice.
    Taya Y; O'Kane S; Ferguson MW
    Development; 1999 Sep; 126(17):3869-79. PubMed ID: 10433915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ephrin reverse signaling controls palate fusion via a PI3 kinase-dependent mechanism.
    San Miguel S; Serrano MJ; Sachar A; Henkemeyer M; Svoboda KK; Benson MD
    Dev Dyn; 2011 Feb; 240(2):357-64. PubMed ID: 21246652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGF-β Signaling and the Epithelial-Mesenchymal Transition during Palatal Fusion.
    Nakajima A; F Shuler C; Gulka AOD; Hanai JI
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal localization of periostin and its potential role in epithelial-mesenchymal transition during palatal fusion.
    Kitase Y; Yamashiro K; Fu K; Richman JM; Shuler CF
    Cells Tissues Organs; 2011; 193(1-2):53-63. PubMed ID: 21051860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of palate epithelial mesenchymal transition by transforming growth factor β3 signaling.
    Jalali A; Zhu X; Liu C; Nawshad A
    Dev Growth Differ; 2012 Aug; 54(6):633-48. PubMed ID: 22775504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method of Studying Palatal Fusion using Static Organ Culture.
    Ibrahim I; Serrano MJ; Svoboda KK
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26437268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis.
    Teng T; Teng CS; Kaartinen V; Bush JO
    Development; 2022 May; 149(10):. PubMed ID: 35593401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation.
    Vaziri Sani F; Hallberg K; Harfe BD; McMahon AP; Linde A; Gritli-Linde A
    Dev Biol; 2005 Sep; 285(2):490-5. PubMed ID: 16109396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion.
    Jin JZ; Ding J
    Development; 2006 Sep; 133(17):3341-7. PubMed ID: 16887819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT).
    Nawshad A; LaGamba D; Hay ED
    Arch Oral Biol; 2004 Sep; 49(9):675-89. PubMed ID: 15275855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased miR-200c levels disrupt palatal fusion by affecting apoptosis, cell proliferation, and cell migration.
    Won HJ; Won HS; Shin JO
    Biochem Biophys Res Commun; 2023 Jul; 664():43-49. PubMed ID: 37137222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGFbeta3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro.
    Sun D; Vanderburg CR; Odierna GS; Hay ED
    Development; 1998 Jan; 125(1):95-105. PubMed ID: 9389667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periderm: Life-cycle and function during orofacial and epidermal development.
    Hammond NL; Dixon J; Dixon MJ
    Semin Cell Dev Biol; 2019 Jul; 91():75-83. PubMed ID: 28803895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect.
    Dudas M; Li WY; Kim J; Yang A; Kaartinen V
    Acta Histochem; 2007; 109(1):1-14. PubMed ID: 16962647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midline fusion in the formation of the secondary palate anticipated by upregulation of keratin K5/6 and localized expression of vimentin mRNA in medial edge epithelium.
    Gibbins JR; Manthey A; Tazawa YM; Scott B; Bloch-Zupan A; Hunter N
    Int J Dev Biol; 1999 May; 43(3):237-44. PubMed ID: 10410903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.