BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31264746)

  • 1. Differential regulation of Kidins220 isoforms in Huntington's disease.
    Sebastián-Serrano Á; Simón-García A; Belmonte-Alfaro A; Pose-Utrilla J; Santos-Galindo M; Del Puerto A; García-Guerra L; Hernández IH; Schiavo G; Campanero MR; Lucas JJ; Iglesias T
    Brain Pathol; 2020 Jan; 30(1):120-136. PubMed ID: 31264746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3β/PP1 imbalance.
    López-Menéndez C; Gamir-Morralla A; Jurado-Arjona J; Higuero AM; Campanero MR; Ferrer I; Hernández F; Ávila J; Díaz-Guerra M; Iglesias T
    Hum Mol Genet; 2013 Feb; 22(3):466-82. PubMed ID: 23118350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity.
    Gamir-Morralla A; López-Menéndez C; Ayuso-Dolado S; Tejeda GS; Montaner J; Rosell A; Iglesias T; Díaz-Guerra M
    Cell Death Dis; 2015 Oct; 6(10):e1939. PubMed ID: 26492372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.
    Schmieg N; Thomas C; Yabe A; Lynch DS; Iglesias T; Chakravarty P; Schiavo G
    PLoS One; 2015; 10(6):e0129944. PubMed ID: 26083449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels.
    López-Benito S; Sánchez-Sánchez J; Brito V; Calvo L; Lisa S; Torres-Valle M; Palko ME; Vicente-García C; Fernández-Fernández S; Bolaños JP; Ginés S; Tessarollo L; Arévalo JC
    J Neurosci; 2018 Jun; 38(23):5415-5428. PubMed ID: 29769266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes.
    López-Menéndez C; Simón-García A; Gamir-Morralla A; Pose-Utrilla J; Luján R; Mochizuki N; Díaz-Guerra M; Iglesias T
    Cell Death Dis; 2019 Jul; 10(7):535. PubMed ID: 31296845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways.
    López-Menéndez C; Gascón S; Sobrado M; Vidaurre OG; Higuero AM; Rodríguez-Peña A; Iglesias T; Díaz-Guerra M
    J Cell Sci; 2009 Oct; 122(Pt 19):3554-65. PubMed ID: 19759287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity.
    Josifova DJ; Monroe GR; Tessadori F; de Graaff E; van der Zwaag B; Mehta SG; ; Harakalova M; Duran KJ; Savelberg SM; Nijman IJ; Jungbluth H; Hoogenraad CC; Bakkers J; Knoers NV; Firth HV; Beales PL; van Haaften G; van Haelst MM
    Hum Mol Genet; 2016 Jun; 25(11):2158-2167. PubMed ID: 27005418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.
    Reddy PH; Charles V; Williams M; Miller G; Whetsell WO; Tagle DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1035-45. PubMed ID: 10434303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Expression of Foxp1 as a Contributing Factor in Huntington's Disease.
    Louis Sam Titus ASC; Yusuff T; Cassar M; Thomas E; Kretzschmar D; D'Mello SR
    J Neurosci; 2017 Jul; 37(27):6575-6587. PubMed ID: 28550168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies.
    Brito V; Puigdellívol M; Giralt A; del Toro D; Alberch J; Ginés S
    Cell Death Dis; 2013 Apr; 4(4):e595. PubMed ID: 23598407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington's disease affected brain.
    Lim NK; Hung LW; Pang TY; Mclean CA; Liddell JR; Hilton JB; Li QX; White AR; Hannan AJ; Crouch PJ
    Hum Mol Genet; 2014 Aug; 23(15):4051-63. PubMed ID: 24634145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease.
    Ferrante A; Martire A; Pepponi R; Varani K; Vincenzi F; Ferraro L; Beggiato S; Tebano MT; Popoli P
    Neurobiol Dis; 2014 Nov; 71():193-204. PubMed ID: 25132555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington's disease mice.
    Zajac MS; Pang TY; Wong N; Weinrich B; Leang LS; Craig JM; Saffery R; Hannan AJ
    Hippocampus; 2010 May; 20(5):621-36. PubMed ID: 19499586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein is regulated by activity-dependent calpain proteolysis and modulates synaptic plasticity.
    Wu SH; Arévalo JC; Neubrand VE; Zhang H; Arancio O; Chao MV
    J Biol Chem; 2010 Dec; 285(52):40472-8. PubMed ID: 20943655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis.
    Lee CY; Cantle JP; Yang XW
    FEBS J; 2013 Sep; 280(18):4382-94. PubMed ID: 23829302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.