These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 31264786)
1. A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications. Lin CY; Chen CF; Chang YM; Yang SH; Lee KC; Wu WW; Jian WB; Lin YF Small; 2019 Aug; 15(33):e1900865. PubMed ID: 31264786 [TBL] [Abstract][Full Text] [Related]
2. Ambipolar MoTe2 transistors and their applications in logic circuits. Lin YF; Xu Y; Wang ST; Li SL; Yamamoto M; Aparecido-Ferreira A; Li W; Sun H; Nakaharai S; Jian WB; Ueno K; Tsukagoshi K Adv Mater; 2014 May; 26(20):3263-9. PubMed ID: 24692079 [TBL] [Abstract][Full Text] [Related]
3. Ferromagnetic germanide in Ge nanowire transistors for spintronics application. Tang J; Wang CY; Hung MH; Jiang X; Chang LT; He L; Liu PH; Yang HJ; Tuan HY; Chen LJ; Wang KL ACS Nano; 2012 Jun; 6(6):5710-7. PubMed ID: 22658951 [TBL] [Abstract][Full Text] [Related]
4. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197 [TBL] [Abstract][Full Text] [Related]
5. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire. Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433 [TBL] [Abstract][Full Text] [Related]
6. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient. Barreda JL; Keiper TD; Zhang M; Xiong P ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114 [TBL] [Abstract][Full Text] [Related]
7. Enabling Energy Efficiency and Polarity Control in Germanium Nanowire Transistors by Individually Gated Nanojunctions. Trommer J; Heinzig A; Mühle U; Löffler M; Winzer A; Jordan PM; Beister J; Baldauf T; Geidel M; Adolphi B; Zschech E; Mikolajick T; Weber WM ACS Nano; 2017 Feb; 11(2):1704-1711. PubMed ID: 28080025 [TBL] [Abstract][Full Text] [Related]
8. Device Noise Reduction for Silicon Nanowire Field-Effect-Transistor Based Sensors by Using a Schottky Junction Gate. Chen X; Chen S; Hu Q; Zhang SL; Solomon P; Zhang Z ACS Sens; 2019 Feb; 4(2):427-433. PubMed ID: 30632733 [TBL] [Abstract][Full Text] [Related]
9. Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors. Tang J; Wang CY; Xiu F; Hong AJ; Chen S; Wang M; Zeng C; Yang HJ; Tuan HY; Tsai CJ; Chen LJ; Wang KL Nanotechnology; 2010 Dec; 21(50):505704. PubMed ID: 21098938 [TBL] [Abstract][Full Text] [Related]
10. Atomic scale alignment of copper-germanide contacts for ge nanowire metal oxide field effect transistors. Burchhart T; Lugstein A; Hyun YJ; Hochleitner G; Bertagnolli E Nano Lett; 2009 Nov; 9(11):3739-42. PubMed ID: 19691284 [TBL] [Abstract][Full Text] [Related]
12. Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Zhao Y; Candebat D; Delker C; Zi Y; Janes D; Appenzeller J; Yang C Nano Lett; 2012 Oct; 12(10):5331-6. PubMed ID: 22950905 [TBL] [Abstract][Full Text] [Related]
13. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. Du Y; Liu H; Deng Y; Ye PD ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022 [TBL] [Abstract][Full Text] [Related]
14. Gate-Tunable Electron Transport Phenomena in Al-Ge⟨111⟩-Al Nanowire Heterostructures. Brunbauer FM; Bertagnolli E; Lugstein A Nano Lett; 2015 Nov; 15(11):7514-8. PubMed ID: 26426433 [TBL] [Abstract][Full Text] [Related]
15. Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures. Kral S; Zeiner C; Stöger-Pollach M; Bertagnolli E; den Hertog MI; Lopez-Haro M; Robin E; El Hajraoui K; Lugstein A Nano Lett; 2015 Jul; 15(7):4783-7. PubMed ID: 26052733 [TBL] [Abstract][Full Text] [Related]
16. Al-Ge-Al Nanowire Heterostructure: From Single-Hole Quantum Dot to Josephson Effect. Delaforce J; Sistani M; Kramer RBG; Luong MA; Roch N; Weber WM; den Hertog MI; Robin E; Naud C; Lugstein A; Buisson O Adv Mater; 2021 Oct; 33(39):e2101989. PubMed ID: 34365674 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional devices and logic gates with undoped silicon nanowires. Mongillo M; Spathis P; Katsaros G; Gentile P; De Franceschi S Nano Lett; 2012 Jun; 12(6):3074-9. PubMed ID: 22594644 [TBL] [Abstract][Full Text] [Related]
18. Electrical transport of bottom-up grown single-crystal Si(1-x)Ge(x) nanowire. Yang WF; Lee SJ; Liang GC; Whang SJ; Kwong DL Nanotechnology; 2008 Jun; 19(22):225203. PubMed ID: 21825755 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Electronic Transport of Al-Si and Al-Ge Nanojunctions by Exploiting Temperature-Dependent Bias Spectroscopy. Behrle R; Murphey CGE; Cahoon JF; Barth S; den Hertog MI; Weber WM; Sistani M ACS Appl Mater Interfaces; 2024 Apr; 16(15):19350-19358. PubMed ID: 38563742 [TBL] [Abstract][Full Text] [Related]