BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31264869)

  • 1. A Robust Machine Learning Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials.
    Fanourgakis GS; Gkagkas K; Tylianakis E; Klontzas E; Froudakis G
    J Phys Chem A; 2019 Jul; 123(28):6080-6087. PubMed ID: 31264869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Universal Machine Learning Algorithm for Large-Scale Screening of Materials.
    Fanourgakis GS; Gkagkas K; Tylianakis E; Froudakis GE
    J Am Chem Soc; 2020 Feb; 142(8):3814-3822. PubMed ID: 32017547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure.
    Fernandez M; Barnard AS
    ACS Comb Sci; 2016 May; 18(5):243-52. PubMed ID: 27022760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.
    Zhang X; Cui J; Zhang K; Wu J; Lee Y
    J Chem Inf Model; 2019 Nov; 59(11):4636-4644. PubMed ID: 31661958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals.
    Kaija AR; Wilmer CE
    J Phys Chem Lett; 2018 Aug; 9(15):4275-4281. PubMed ID: 29983053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored?
    Wu H; Simmons JM; Liu Y; Brown CM; Wang XS; Ma S; Peterson VK; Southon PD; Kepert CJ; Zhou HC; Yildirim T; Zhou W
    Chemistry; 2010 May; 16(17):5205-14. PubMed ID: 20358553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Silico Evolution of High-Performing Metal Organic Frameworks for Methane Adsorption.
    Beauregard N; Pardakhti M; Srivastava R
    J Chem Inf Model; 2021 Jul; 61(7):3232-3239. PubMed ID: 34264660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning insights into predicting biogas separation in metal-organic frameworks.
    Cooley I; Boobier S; Hirst JD; Besley E
    Commun Chem; 2024 May; 7(1):102. PubMed ID: 38720065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting hydrogen storage in MOFs via machine learning.
    Ahmed A; Siegel DJ
    Patterns (N Y); 2021 Jul; 2(7):100291. PubMed ID: 34286305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of machine learning for predicting the methane uptake and working capacity of MOFs.
    Suyetin M
    Faraday Discuss; 2021 Oct; 231(0):224-234. PubMed ID: 34195741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.
    Fernandez M; Boyd PG; Daff TD; Aghaji MZ; Woo TK
    J Phys Chem Lett; 2014 Sep; 5(17):3056-60. PubMed ID: 26278259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer Learning Study of Gas Adsorption in Metal-Organic Frameworks.
    Ma R; Colón YJ; Luo T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34041-34048. PubMed ID: 32613831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons.
    Ihm Y; Cooper VR; Gallego NC; Contescu CI; Morris JR
    J Chem Theory Comput; 2014 Jan; 10(1):1-4. PubMed ID: 26579886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations.
    Peng L; Zhu Q; Wu P; Wu X; Cai W
    Phys Chem Chem Phys; 2019 Apr; 21(16):8508-8516. PubMed ID: 30957807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model.
    Anderson R; Biong A; Gómez-Gualdrón DA
    J Chem Theory Comput; 2020 Feb; 16(2):1271-1283. PubMed ID: 31922755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials.
    Shi K; Li Z; Anstine DM; Tang D; Colina CM; Sholl DS; Siepmann JI; Snurr RQ
    J Chem Theory Comput; 2023 Jul; 19(14):4568-4583. PubMed ID: 36735251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.