These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3126504)

  • 1. Identification and purification of the intestinal Na/phosphate cotransporter.
    Peerce BE
    Prog Clin Biol Res; 1988; 252():73-80. PubMed ID: 3126504
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of the intestinal Na-phosphate cotransporter.
    Peerce BE
    Am J Physiol; 1989 Apr; 256(4 Pt 1):G645-52. PubMed ID: 2705525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the mechanism of Na+/phosphate cotransport. Use of fluorophosphate and the nature of cotransporter functional asymmetry.
    Peerce BE; Kiesling C
    Miner Electrolyte Metab; 1990; 16(2-3):125-9. PubMed ID: 2250618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal phosphate transport: localization, properties and identification, a progress report.
    Shirazi-Beechey SP; Gorvel JP; Beechey RB
    Prog Clin Biol Res; 1988; 252():59-64. PubMed ID: 3347632
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of substrates and pH on the intestinal Na+/phosphate cotransporter: evidence for an intervesicular divalent phosphate allosteric regulatory site.
    Peerce BE
    Biochim Biophys Acta; 1995 Oct; 1239(1):1-10. PubMed ID: 7548137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the low and high affinity Na+-phosphate co-transport system in rat renal cortex.
    Bindels RJ; van den Broek LA; van Os CH
    Prog Clin Biol Res; 1988; 252():359-64. PubMed ID: 3347626
    [No Abstract]   [Full Text] [Related]  

  • 7. The mitochondrial phosphate transport protein and the kidney and intestine sodium/phosphate cotransporters--recent progress and a comparison.
    Wohlrab H; Bukusoglu C; Abuerreish G; Rasmussen U; Kolbé H
    Prog Clin Biol Res; 1988; 252():177-82. PubMed ID: 3279425
    [No Abstract]   [Full Text] [Related]  

  • 8. Control of proximal tubular apical Na/Pi cotransport.
    Murer H; Biber J
    Exp Nephrol; 1996; 4(4):201-4. PubMed ID: 8864723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of the substrate stoichiometry of the intestinal Na+/phosphate cotransporter.
    Peerce BE
    J Membr Biol; 1989 Sep; 110(2):189-97. PubMed ID: 2810348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of intestinal Na(+)-phosphate cotransporter.
    Peerce BE; Cedilote M; Seifert S; Levine R; Kiesling C; Clarke RD
    Am J Physiol; 1993 Apr; 264(4 Pt 1):G609-16. PubMed ID: 8476048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 40-kDa polypeptide from papain digestion of the rabbit intestinal Na+/phosphate cotransporter retains Na+ and phosphate cotransport.
    Peerce BE
    Arch Biochem Biophys; 2002 May; 401(1):1-10. PubMed ID: 12054481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
    Radanovic T; Wagner CA; Murer H; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous occlusion of Na+ and phosphate by the intestinal brush border membrane Na+/phosphate cotransporter.
    Peerce BE
    Kidney Int; 1996 Apr; 49(4):988-91. PubMed ID: 8691750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate transport adaptation in intestinal brush border membrane vesicles (BBMV) and plasma levels of 1,25-dihydroxycholecalciferol.
    Danisi G; Caverzasio J; Trechsel U; Straub R; Bonjour JP
    Prog Clin Biol Res; 1988; 252():65-6. PubMed ID: 3347633
    [No Abstract]   [Full Text] [Related]  

  • 16. A phosphorylated phloretin derivative. Synthesis and effect on intestinal Na(+)-dependent phosphate absorption.
    Peerce BE; Clarke R
    Am J Physiol Gastrointest Liver Physiol; 2002 Oct; 283(4):G848-55. PubMed ID: 12223344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation to phosphate depletion in opossum kidney cells.
    Saxena S; Dansby L; Allon M
    Biochem Biophys Res Commun; 1995 Nov; 216(1):141-7. PubMed ID: 7488080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization.
    Tenenhouse HS; Werner A; Biber J; Ma S; Martel J; Roy S; Murer H
    J Clin Invest; 1994 Feb; 93(2):671-6. PubMed ID: 8113402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2).
    Xu H; Bai L; Collins JF; Ghishan FK
    Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.