BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31265042)

  • 1. Core-shell vs. multi-shell formation in nanoalloy evolution from disordered configurations.
    Nelli D; Ferrando R
    Nanoscale; 2019 Jul; 11(27):13040-13050. PubMed ID: 31265042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.
    Wen YH; Huang R; Shao GF; Sun SG
    J Phys Chem Lett; 2017 Sep; 8(17):4273-4278. PubMed ID: 28837772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay between interdiffusion and shape transformations in nanoalloys evolving from core-shell to intermixed structures.
    Nelli D; Mottet C; Ferrando R
    Faraday Discuss; 2023 Jan; 242(0):52-68. PubMed ID: 36178100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Steps Versus One-Step Solidification Pathways of Binary Metallic Nanodroplets.
    Nelli D; El Koraychy EY; Cerbelaud M; Crespin B; Videcoq A; Giacomello A; Ferrando R
    ACS Nano; 2023 Jan; 17(1):587-596. PubMed ID: 36537367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental High-Resolution Observation of the Truncated Double-Icosahedron Structure: A Stable Twinned Shell in Alloyed Au-Ag Core@Shell Nanoparticles.
    Mendoza-Cruz R; Palomares-Báez JP; López-López SM; Montejano-Carrizales JM; Rodríguez López JL; José Yacamán M; Bazán-Díaz L
    Nano Lett; 2024 Apr; 24(14):4072-4081. PubMed ID: 38557078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally activated microstructural evolution of metallic heterophase nanoparticles: insights from molecular dynamics simulations.
    Wen YH; Li YM; Yang WH; Huang KW; Huang R
    Nanoscale; 2022 Jul; 14(28):10236-10244. PubMed ID: 35797992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles.
    Li L; Li X; Duan Z; Meyer RJ; Carr R; Raman S; Koziol L; Henkelman G
    Nanoscale; 2019 May; 11(21):10524-10535. PubMed ID: 31116210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu segregation in Au-Cu nanoparticles exposed to hydrogen atmospheric pressure: how is fcc symmetry maintained?
    Wang Q; Nassereddine A; Loffreda D; Ricolleau C; Alloyeau D; Louis C; Delannoy L; Nelayah J; Guesmi H
    Faraday Discuss; 2023 Jan; 242(0):375-388. PubMed ID: 36178299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach.
    Sinha T; Ahmaruzzaman M
    J Colloid Interface Sci; 2015 Sep; 453():115-131. PubMed ID: 25978558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational properties and specific heat of core-shell Ag-Au icosahedral nanoparticles.
    Sauceda HE; Garzón IL
    Phys Chem Chem Phys; 2015 Nov; 17(42):28054-9. PubMed ID: 25697903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdiffusion and surface-sandwich ordering in initial Ni-core-Pd-shell nanoparticle.
    Evteev AV; Levchenko EV; Belova IV; Murch GE
    Phys Chem Chem Phys; 2009 May; 11(17):3233-40. PubMed ID: 19370219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of Pt-Au nanoalloys during heating process: comparison of random and core-shell orderings.
    Yang Z; Yang X; Xu Z; Liu S
    Phys Chem Chem Phys; 2009 Aug; 11(29):6249-55. PubMed ID: 19606336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.
    Grammatikopoulos P; Kioseoglou J; Galea A; Vernieres J; Benelmekki M; Diaz RE; Sowwan M
    Nanoscale; 2016 May; 8(18):9780-90. PubMed ID: 27119383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined atomistic simulations to explore metastability and substrate effects in Ag-Co nanoalloy systems.
    Hizi A; Forster GD; Ferrando R; Garreau Y; Coati A; Andreazza-Vignolle C; Andreazza P
    Faraday Discuss; 2023 Jan; 242(0):35-51. PubMed ID: 36349781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General Trends in Core-Shell Preferences for Bimetallic Nanoparticles.
    Eom N; Messing ME; Johansson J; Deppert K
    ACS Nano; 2021 May; 15(5):8883-8895. PubMed ID: 33890464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological evolution and ordered quantum structure formation in heteroepitaxial core--shell nanowires.
    Guo JY; Zhang YW; Shenoy VB
    ACS Nano; 2010 Aug; 4(8):4455-62. PubMed ID: 20681529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.