BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31265076)

  • 1. Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization.
    Liu D; Davila-Velderrain J; Zhang Z; Kellis M
    Nucleic Acids Res; 2019 Aug; 47(14):7235-7246. PubMed ID: 31265076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.
    Zacher B; Michel M; Schwalb B; Cramer P; Tresch A; Gagneur J
    PLoS One; 2017; 12(1):e0169249. PubMed ID: 28056037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
    Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D
    Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TAD boundary and strength prediction by integrating sequence and epigenetic profile information.
    Wang Y; Liu Y; Xu Q; Xu Y; Cao K; Deng N; Wang R; Zhang X; Zheng R; Li G; Fang Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-type-specific 3D epigenomes in the developing human cortex.
    Song M; Pebworth MP; Yang X; Abnousi A; Fan C; Wen J; Rosen JD; Choudhary MNK; Cui X; Jones IR; Bergenholtz S; Eze UC; Juric I; Li B; Maliskova L; Lee J; Liu W; Pollen AA; Li Y; Wang T; Hu M; Kriegstein AR; Shen Y
    Nature; 2020 Nov; 587(7835):644-649. PubMed ID: 33057195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks.
    Klein HU; Schäfer M; Bennett DA; Schwender H; De Jager PL
    PLoS Comput Biol; 2020 Apr; 16(4):e1007771. PubMed ID: 32255787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
    Thibodeau A; Márquez EJ; Luo O; Ruan Y; Menghi F; Shin DG; Stitzel ML; Vera-Licona P; Ucar D
    PLoS Comput Biol; 2016 Jun; 12(6):e1004809. PubMed ID: 27336171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential regulatory activity prediction across chromosomes with convolutional neural networks.
    Kelley DR; Reshef YA; Bileschi M; Belanger D; McLean CY; Snoek J
    Genome Res; 2018 May; 28(5):739-750. PubMed ID: 29588361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EpiCompare: an online tool to define and explore genomic regions with tissue or cell type-specific epigenomic features.
    He Y; Wang T
    Bioinformatics; 2017 Oct; 33(20):3268-3275. PubMed ID: 28605501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors.
    Cattoglio C; Pellin D; Rizzi E; Maruggi G; Corti G; Miselli F; Sartori D; Guffanti A; Di Serio C; Ambrosi A; De Bellis G; Mavilio F
    Blood; 2010 Dec; 116(25):5507-17. PubMed ID: 20864581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD8
    He B; Xing S; Chen C; Gao P; Teng L; Shan Q; Gullicksrud JA; Martin MD; Yu S; Harty JT; Badovinac VP; Tan K; Xue HH
    Immunity; 2016 Dec; 45(6):1341-1354. PubMed ID: 27986453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns.
    Li Y; Chen H; Pan T; Jiang C; Zhao Z; Wang Z; Zhang J; Xu J; Li X
    Oncotarget; 2015 Nov; 6(37):39793-805. PubMed ID: 26485761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix factorization methods for integrative cancer genomics.
    Zhang S; Zhou XJ
    Methods Mol Biol; 2014; 1176():229-42. PubMed ID: 25030932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of molecular network data reconstructs Gene Ontology.
    Gligorijević V; Janjić V; Pržulj N
    Bioinformatics; 2014 Sep; 30(17):i594-600. PubMed ID: 25161252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging three-dimensional chromatin architecture for effective reconstruction of enhancer-target gene regulatory interactions.
    Salviato E; Djordjilović V; Hariprakash JM; Tagliaferri I; Pal K; Ferrari F
    Nucleic Acids Res; 2021 Sep; 49(17):e97. PubMed ID: 34197622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning.
    Li W; Wong WH; Jiang R
    Nucleic Acids Res; 2019 Jun; 47(10):e60. PubMed ID: 30869141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases.
    Marbach D; Lamparter D; Quon G; Kellis M; Kutalik Z; Bergmann S
    Nat Methods; 2016 Apr; 13(4):366-70. PubMed ID: 26950747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.