BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31265076)

  • 21. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial density of open chromatin: an effective metric for the functional characterization of topologically associated domains.
    Jiang S; Li H; Hong H; Du G; Huang X; Sun Y; Wang J; Tao H; Xu K; Li C; Chen Y; Chen H; Bo X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32987404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EpiAlign: an alignment-based bioinformatic tool for comparing chromatin state sequences.
    Ge X; Zhang H; Xie L; Li WV; Kwon SB; Li JJ
    Nucleic Acids Res; 2019 Jul; 47(13):e77. PubMed ID: 31045217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A scalable approach for discovering conserved active subnetworks across species.
    Deshpande R; Sharma S; Verfaillie CM; Hu WS; Myers CL
    PLoS Comput Biol; 2010 Dec; 6(12):e1001028. PubMed ID: 21170309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing 3D interaction maps from 1D epigenomes.
    Zhu Y; Chen Z; Zhang K; Wang M; Medovoy D; Whitaker JW; Ding B; Li N; Zheng L; Wang W
    Nat Commun; 2016 Mar; 7():10812. PubMed ID: 26960733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous clustering of multiple gene expression and physical interaction datasets.
    Narayanan M; Vetta A; Schadt EE; Zhu J
    PLoS Comput Biol; 2010 Apr; 6(4):e1000742. PubMed ID: 20419151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression-based network biology identifies immune-related functional modules involved in plant defense.
    Tully JP; Hill AE; Ahmed HM; Whitley R; Skjellum A; Mukhtar MS
    BMC Genomics; 2014 Jun; 15():421. PubMed ID: 24888606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locus-specific editing of histone modifications at endogenous enhancers.
    Mendenhall EM; Williamson KE; Reyon D; Zou JY; Ram O; Joung JK; Bernstein BE
    Nat Biotechnol; 2013 Dec; 31(12):1133-6. PubMed ID: 24013198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue-specific regulatory elements in mammalian promoters.
    Smith AD; Sumazin P; Zhang MQ
    Mol Syst Biol; 2007; 3():73. PubMed ID: 17224917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation.
    Zhang JG; Tan LJ; Xu C; He H; Tian Q; Zhou Y; Qiu C; Chen XD; Deng HW
    PLoS One; 2015; 10(9):e0138524. PubMed ID: 26390436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules.
    Zhang S; Li Q; Liu J; Zhou XJ
    Bioinformatics; 2011 Jul; 27(13):i401-9. PubMed ID: 21685098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.
    Li WV; Razaee ZS; Li JJ
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification.
    Haverty PM; Hansen U; Weng Z
    Nucleic Acids Res; 2004; 32(1):179-88. PubMed ID: 14704355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrative analysis of reference epigenomes in 20 rice varieties.
    Zhao L; Xie L; Zhang Q; Ouyang W; Deng L; Guan P; Ma M; Li Y; Zhang Y; Xiao Q; Zhang J; Li H; Wang S; Man J; Cao Z; Zhang Q; Zhang Q; Li G; Li X
    Nat Commun; 2020 May; 11(1):2658. PubMed ID: 32461553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying chromatin to shut off enhancers.
    Rusk N
    Nat Methods; 2013 Nov; 10(11):1052-3. PubMed ID: 24344380
    [No Abstract]   [Full Text] [Related]  

  • 38. 'Traffic light rules': Chromatin states direct miRNA-mediated network motifs running by integrating epigenome and regulatome.
    Zhao H; Zhang G; Pang L; Lan Y; Wang L; Yu F; Hu J; Li F; Zhao T; Xiao Y; Li X
    Biochim Biophys Acta; 2016 Jul; 1860(7):1475-88. PubMed ID: 27091612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-expression Networks in Predicting Transcriptional Gene Regulation.
    AbuQamar SF; El-Tarabily KA; Sham A
    Methods Mol Biol; 2021; 2328():1-11. PubMed ID: 34251616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.