These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31265154)
1. Estimation of model accuracy in CASP13. Cheng J; Choe MH; Elofsson A; Han KS; Hou J; Maghrabi AHA; McGuffin LJ; Menéndez-Hurtado D; Olechnovič K; Schwede T; Studer G; Uziela K; Venclovas Č; Wallner B Proteins; 2019 Dec; 87(12):1361-1377. PubMed ID: 31265154 [TBL] [Abstract][Full Text] [Related]
2. Assessment of protein model structure accuracy estimation in CASP13: Challenges in the era of deep learning. Won J; Baek M; Monastyrskyy B; Kryshtafovych A; Seok C Proteins; 2019 Dec; 87(12):1351-1360. PubMed ID: 31436360 [TBL] [Abstract][Full Text] [Related]
3. Analysis of distance-based protein structure prediction by deep learning in CASP13. Xu J; Wang S Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916 [TBL] [Abstract][Full Text] [Related]
4. Methods for estimation of model accuracy in CASP12. Elofsson A; Joo K; Keasar C; Lee J; Maghrabi AHA; Manavalan B; McGuffin LJ; Ménendez Hurtado D; Mirabello C; Pilstål R; Sidi T; Uziela K; Wallner B Proteins; 2018 Mar; 86 Suppl 1():361-373. PubMed ID: 28975666 [TBL] [Abstract][Full Text] [Related]
5. A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments. Abriata LA; Tamò GE; Dal Peraro M Proteins; 2019 Dec; 87(12):1100-1112. PubMed ID: 31344267 [TBL] [Abstract][Full Text] [Related]
6. Deep-learning contact-map guided protein structure prediction in CASP13. Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149 [TBL] [Abstract][Full Text] [Related]
7. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Hou J; Wu T; Cao R; Cheng J Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027 [TBL] [Abstract][Full Text] [Related]
8. Small angle X-ray scattering-assisted protein structure prediction in CASP13 and emergence of solution structure differences. Hura GL; Hodge CD; Rosenberg D; Guzenko D; Duarte JM; Monastyrskyy B; Grudinin S; Kryshtafovych A; Tainer JA; Fidelis K; Tsutakawa SE Proteins; 2019 Dec; 87(12):1298-1314. PubMed ID: 31589784 [TBL] [Abstract][Full Text] [Related]
9. Assessment of model accuracy estimations in CASP12. Kryshtafovych A; Monastyrskyy B; Fidelis K; Schwede T; Tramontano A Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):345-360. PubMed ID: 28833563 [TBL] [Abstract][Full Text] [Related]
10. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12. Zhang C; Mortuza SM; He B; Wang Y; Zhang Y Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551 [TBL] [Abstract][Full Text] [Related]
11. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13. Li Y; Zhang C; Bell EW; Yu DJ; Zhang Y Proteins; 2019 Dec; 87(12):1082-1091. PubMed ID: 31407406 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of model refinement in CASP13. Read RJ; Sammito MD; Kryshtafovych A; Croll TI Proteins; 2019 Dec; 87(12):1249-1262. PubMed ID: 31365160 [TBL] [Abstract][Full Text] [Related]
13. Driven to near-experimental accuracy by refinement via molecular dynamics simulations. Heo L; Arbour CF; Feig M Proteins; 2019 Dec; 87(12):1263-1275. PubMed ID: 31197841 [TBL] [Abstract][Full Text] [Related]