BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31265226)

  • 1. Microgels Sopping Up Toxins-GM1a-Functionalized Microgels as Scavengers for Cholera Toxin.
    Boesveld S; Jans A; Rommel D; Bartneck M; Möller M; Elling L; Trautwein C; Strnad P; Kuehne AJC
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25017-25023. PubMed ID: 31265226
    [No Abstract]   [Full Text] [Related]  

  • 2. Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene.
    Garcia-Hartjes J; Bernardi S; Weijers CA; Wennekes T; Gilbert M; Sansone F; Casnati A; Zuilhof H
    Org Biomol Chem; 2013 Jul; 11(26):4340-9. PubMed ID: 23689250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro.
    Yu RK; Usuki S; Itokazu Y; Wu HC
    Glycobiology; 2016 Jan; 26(1):63-73. PubMed ID: 26405107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications of cholera toxin subunit B binding to human large intestinal epithelium. An immunohistochemical study.
    Kirkeby S; Lynge Pedersen AM
    Microb Pathog; 2018 Nov; 124():332-336. PubMed ID: 30145256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor.
    Sarwar S; Ali A; Pal M; Chakrabarti P
    J Biol Chem; 2017 Nov; 292(44):18303-18311. PubMed ID: 28882894
    [No Abstract]   [Full Text] [Related]  

  • 6. Neutralization of cholera toxin with nanoparticle decoys for treatment of cholera.
    Das S; Angsantikul P; Le C; Bao D; Miyamoto Y; Gao W; Zhang L; Eckmann L
    PLoS Negl Trop Dis; 2018 Feb; 12(2):e0006266. PubMed ID: 29470490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholera: pathophysiology and emerging therapeutic targets.
    Muanprasat C; Chatsudthipong V
    Future Med Chem; 2013 May; 5(7):781-98. PubMed ID: 23651092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site.
    Heim JB; Hodnik V; Heggelund JE; Anderluh G; Krengel U
    Sci Rep; 2019 Aug; 9(1):12243. PubMed ID: 31439922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbes and microbial Toxins: paradigms for microbial-mucosal toxins. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin.
    Lencer WI
    Am J Physiol Gastrointest Liver Physiol; 2001 May; 280(5):G781-6. PubMed ID: 11292584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide.
    Merritt EA; Sarfaty S; van den Akker F; L'Hoir C; Martial JA; Hol WG
    Protein Sci; 1994 Feb; 3(2):166-75. PubMed ID: 8003954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.
    Oh YT; Lee KM; Bari W; Kim HY; Kim HJ; Yoon SS
    J Microbiol Biotechnol; 2016 Mar; 26(3):627-36. PubMed ID: 26718467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera.
    Kuhlmann FM; Santhanam S; Kumar P; Luo Q; Ciorba MA; Fleckenstein JM
    Am J Trop Med Hyg; 2016 Aug; 95(2):440-3. PubMed ID: 27162272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells.
    Chatterjee D; Chaudhuri K
    FEBS Lett; 2011 May; 585(9):1357-62. PubMed ID: 21510946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutralization of cholera toxin by Rosaceae family plant extracts.
    Komiazyk M; Palczewska M; Sitkiewicz I; Pikula S; Groves P
    BMC Complement Altern Med; 2019 Jun; 19(1):140. PubMed ID: 31221152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong inhibition of cholera toxin by multivalent GM1 derivatives.
    Pukin AV; Branderhorst HM; Sisu C; Weijers CA; Gilbert M; Liskamp RM; Visser GM; Zuilhof H; Pieters RJ
    Chembiochem; 2007 Sep; 8(13):1500-3. PubMed ID: 17625801
    [No Abstract]   [Full Text] [Related]  

  • 16. Glycan-Functionalized Microgels for Scavenging and Specific Binding of Lectins.
    Jans A; Rosencrantz RR; Mandić AD; Anwar N; Boesveld S; Trautwein C; Moeller M; Sellge G; Elling L; Kuehne AJC
    Biomacromolecules; 2017 May; 18(5):1460-1465. PubMed ID: 28257575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in epitopes of the B subunit of Vibrio cholerae non-O1 and Vibrio mimicus cholera toxins.
    Tamplin ML; Jalali R; Ahmed MK; Colwell RR
    Can J Microbiol; 1990 Jun; 36(6):409-13. PubMed ID: 1697780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin.
    Fullner KJ; Mekalanos JJ
    EMBO J; 2000 Oct; 19(20):5315-23. PubMed ID: 11032799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GM(1)-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples.
    Edwards KA; March JC
    Anal Biochem; 2007 Sep; 368(1):39-48. PubMed ID: 17603995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Inhibition of Cholera Toxin B Subunit by Affordable, Polymer-Based Multivalent Inhibitors.
    Haksar D; de Poel E; van Ufford LQ; Bhatia S; Haag R; Beekman J; Pieters RJ
    Bioconjug Chem; 2019 Mar; 30(3):785-792. PubMed ID: 30629410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.