These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31265232)

  • 21. Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans.
    Palmer JM; Theisen JM; Duran RM; Grayburn WS; Calvo AM; Keller NP
    PLoS Genet; 2013; 9(1):e1003193. PubMed ID: 23341778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans.
    Reyes-Dominguez Y; Bok JW; Berger H; Shwab EK; Basheer A; Gallmetzer A; Scazzocchio C; Keller N; Strauss J
    Mol Microbiol; 2010 Jun; 76(6):1376-86. PubMed ID: 20132440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the zinc finger transcription factor SltA in morphogenesis and sterigmatocystin biosynthesis in the fungus Aspergillus nidulans.
    Shantappa S; Dhingra S; Hernández-Ortiz P; Espeso EA; Calvo AM
    PLoS One; 2013; 8(7):e68492. PubMed ID: 23840895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LaeA, a regulator of secondary metabolism in Aspergillus spp.
    Bok JW; Keller NP
    Eukaryot Cell; 2004 Apr; 3(2):527-35. PubMed ID: 15075281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA.
    Bouhired S; Weber M; Kempf-Sontag A; Keller NP; Hoffmeister D
    Fungal Genet Biol; 2007 Nov; 44(11):1134-45. PubMed ID: 17291795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans.
    Bromann K; Toivari M; Viljanen K; Vuoristo A; Ruohonen L; Nakari-Setälä T
    PLoS One; 2012; 7(4):e35450. PubMed ID: 22506079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling.
    Lv Y; Lv A; Zhai H; Zhang S; Li L; Cai J; Hu Y
    Int J Food Microbiol; 2018 Nov; 284():11-21. PubMed ID: 29990635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans.
    Elramli N; Karahoda B; Sarikaya-Bayram Ö; Frawley D; Ulas M; Oakley CE; Oakley BR; Seiler S; Bayram Ö
    PLoS Genet; 2019 Mar; 15(3):e1008053. PubMed ID: 30883543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Putative C
    Li X; Zhao Y; Moon H; Lim J; Park HS; Liu Z; Yu JH
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans.
    Zehetbauer F; Seidl A; Berger H; Sulyok M; Kastner F; Strauss J
    Fungal Genet Biol; 2022 Sep; 162():103726. PubMed ID: 35843417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways.
    Martín JF
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):525-535. PubMed ID: 27565675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The function of a conidia specific transcription factor CsgA in Aspergillus nidulans.
    Cho HJ; Park HS
    Sci Rep; 2022 Sep; 12(1):15588. PubMed ID: 36114253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The velvet-activated putative C
    Zhao Y; Lee MK; Lim J; Moon H; Park HS; Zheng W; Yu JH
    Fungal Biol; 2022; 126(6-7):421-428. PubMed ID: 35667829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in Aspergillus nidulans.
    Grau MF; Entwistle R; Chiang YM; Ahuja M; Oakley CE; Akashi T; Wang CCC; Todd RB; Oakley BR
    ACS Chem Biol; 2018 Nov; 13(11):3193-3205. PubMed ID: 30339758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in
    Wang W; Yu Y; Keller NP; Wang P
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic mining for Aspergillus natural products.
    Bok JW; Hoffmeister D; Maggio-Hall LA; Murillo R; Glasner JD; Keller NP
    Chem Biol; 2006 Jan; 13(1):31-7. PubMed ID: 16426969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspergillus nidulans stcP encodes an O-methyltransferase that is required for sterigmatocystin biosynthesis.
    Kelkar HS; Keller NP; Adams TH
    Appl Environ Microbiol; 1996 Nov; 62(11):4296-8. PubMed ID: 8900026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway.
    Hicks JK; Yu JH; Keller NP; Adams TH
    EMBO J; 1997 Aug; 16(16):4916-23. PubMed ID: 9305634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein.
    Wang G; Ran H; Fan J; Keller NP; Liu Z; Wu F; Yin WB
    Sci Adv; 2022 Apr; 8(17):eabo6094. PubMed ID: 35476435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding
    Kadooka C; Nakamura E; Mori K; Okutsu K; Yoshizaki Y; Takamine K; Goto M; Tamaki H; Futagami T
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.