These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31265277)
1. Electronic Excitations of Polythiophene within Many-Body Perturbation Theory with and without the Tamm-Dancoff Approximation. Lettmann T; Rohlfing M J Chem Theory Comput; 2019 Aug; 15(8):4547-4554. PubMed ID: 31265277 [TBL] [Abstract][Full Text] [Related]
2. Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation. Rocca D; Vörös M; Gali A; Galli G J Chem Theory Comput; 2014 Aug; 10(8):3290-8. PubMed ID: 26588298 [TBL] [Abstract][Full Text] [Related]
3. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation. Rangel T; Hamed SM; Bruneval F; Neaton JB J Chem Phys; 2017 May; 146(19):194108. PubMed ID: 28527441 [TBL] [Abstract][Full Text] [Related]
4. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. Sharifzadeh S J Phys Condens Matter; 2018 Apr; 30(15):153002. PubMed ID: 29460855 [TBL] [Abstract][Full Text] [Related]
5. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials. Cho Y; Bintrim SJ; Berkelbach TC J Chem Theory Comput; 2022 Jun; 18(6):3438-3446. PubMed ID: 35544591 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the Hashemi Z; Leppert L J Phys Chem A; 2021 Mar; 125(10):2163-2172. PubMed ID: 33656894 [TBL] [Abstract][Full Text] [Related]
7. Status in calculating electronic excited states in transition metal oxides from first principles. Bendavid LI; Carter EA Top Curr Chem; 2014; 347():47-98. PubMed ID: 24488486 [TBL] [Abstract][Full Text] [Related]
8. Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism. Li J; Holzmann M; Duchemin I; Blase X; Olevano V Phys Rev Lett; 2017 Apr; 118(16):163001. PubMed ID: 28474954 [TBL] [Abstract][Full Text] [Related]
9. Benchmark of Bethe-Salpeter for Triplet Excited-States. Jacquemin D; Duchemin I; Blondel A; Blase X J Chem Theory Comput; 2017 Feb; 13(2):767-783. PubMed ID: 28107000 [TBL] [Abstract][Full Text] [Related]
10. Excited-State Forces with the Gaussian and Augmented Plane Wave Method for the Tamm-Dancoff Approximation of Time-Dependent Density Functional Theory. Sertcan Gökmen B; Hutter J; Hehn AS J Chem Theory Comput; 2024 Oct; 20(19):8494-8504. PubMed ID: 39293181 [TBL] [Abstract][Full Text] [Related]
11. Optical properties of acene molecules and pentacene crystal from the many-body Green's function method. Leng X; Feng J; Chen T; Liu C; Ma Y Phys Chem Chem Phys; 2016 Nov; 18(44):30777-30784. PubMed ID: 27796382 [TBL] [Abstract][Full Text] [Related]
12. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms. Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185 [TBL] [Abstract][Full Text] [Related]
13. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules. McKeon CA; Hamed SM; Bruneval F; Neaton JB J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597 [TBL] [Abstract][Full Text] [Related]
14. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules. Bruneval F; Hamed SM; Neaton JB J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404 [TBL] [Abstract][Full Text] [Related]
15. Excited-State Geometry Optimization of Small Molecules with Many-Body Green's Functions Theory. Çaylak O; Baumeier B J Chem Theory Comput; 2021 Feb; 17(2):879-888. PubMed ID: 33399447 [TBL] [Abstract][Full Text] [Related]
16. Low-lying excited states in crystalline perylene. Rangel T; Rinn A; Sharifzadeh S; da Jornada FH; Pick A; Louie SG; Witte G; Kronik L; Neaton JB; Chatterjee S Proc Natl Acad Sci U S A; 2018 Jan; 115(2):284-289. PubMed ID: 29279373 [TBL] [Abstract][Full Text] [Related]
17. Electronic excitations of bulk LiCl from many-body perturbation theory. Jiang YF; Wang NP; Rohlfing M J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397 [TBL] [Abstract][Full Text] [Related]
18. Excitation Energies from the Single-Particle Green's Function with the GW Approximation. Jin Y; Yang W J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830 [TBL] [Abstract][Full Text] [Related]
19. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies. Li J; Jin Y; Su NQ; Yang W J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294 [TBL] [Abstract][Full Text] [Related]
20. Dynamical second-order Bethe-Salpeter equation kernel: a method for electronic excitation beyond the adiabatic approximation. Zhang D; Steinmann SN; Yang W J Chem Phys; 2013 Oct; 139(15):154109. PubMed ID: 24160502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]