These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 31265294)
1. How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes? Zazubovich V; Jankowiak R J Phys Chem B; 2019 Jul; 123(28):6007-6013. PubMed ID: 31265294 [TBL] [Abstract][Full Text] [Related]
2. Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments. Pieper J; Rätsep M; Trostmann I; Schmitt FJ; Theiss C; Paulsen H; Eichler HJ; Freiberg A; Renger G J Phys Chem B; 2011 Apr; 115(14):4053-65. PubMed ID: 21417356 [TBL] [Abstract][Full Text] [Related]
3. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II. Reppert M; Zazubovich V; Dang NC; Seibert M; Jankowiak R J Phys Chem B; 2008 Aug; 112(32):9934-47. PubMed ID: 18642950 [TBL] [Abstract][Full Text] [Related]
4. Modeling of various optical spectra in the presence of slow excitation energy transfer in dimers and trimers with weak interpigment coupling: FMO as an example. Herascu N; Kell A; Acharya K; Jankowiak R; Blankenship RE; Zazubovich V J Phys Chem B; 2014 Feb; 118(8):2032-40. PubMed ID: 24506338 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis. Najafi M; Zazubovich V J Phys Chem B; 2015 Jun; 119(25):7911-21. PubMed ID: 26020801 [TBL] [Abstract][Full Text] [Related]
6. Analytical formulas for low-fluence non-line-narrowed hole-burned spectra in an excitonically coupled dimer. Reppert M; Naibo V; Jankowiak R J Chem Phys; 2009 Dec; 131(23):234104. PubMed ID: 20025311 [TBL] [Abstract][Full Text] [Related]
7. New Insight into the Water-Soluble Chlorophyll-Binding Protein from Lepidium virginicum. Kell A; Bednarczyk D; Acharya K; Chen J; Noy D; Jankowiak R Photochem Photobiol; 2016 May; 92(3):428-35. PubMed ID: 26914599 [TBL] [Abstract][Full Text] [Related]
8. Hole-Burning Spectroscopy on Excitonically Coupled Pigments in Proteins: Theory Meets Experiment. Adolphs J; Berrer M; Renger T J Am Chem Soc; 2016 Mar; 138(9):2993-3001. PubMed ID: 26811003 [TBL] [Abstract][Full Text] [Related]
9. Effects of the distributions of energy or charge transfer rates on spectral hole burning in pigment-protein complexes at low temperatures. Herascu N; Ahmouda S; Picorel R; Seibert M; Jankowiak R; Zazubovich V J Phys Chem B; 2011 Dec; 115(50):15098-109. PubMed ID: 22046956 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence line narrowing and Δ-FLN spectra in the presence of excitation energy transfer between weakly coupled chromophores. Zazubovich V J Phys Chem B; 2014 Nov; 118(47):13535-43. PubMed ID: 25369116 [TBL] [Abstract][Full Text] [Related]
11. Conformational Changes in Pigment-Protein Complexes at Low Temperatures-Spectral Memory and a Possibility of Cooperative Effects. Najafi M; Herascu N; Shafiei G; Picorel R; Zazubovich V J Phys Chem B; 2015 Jun; 119(23):6930-40. PubMed ID: 25985255 [TBL] [Abstract][Full Text] [Related]
12. Assignment of the lowest Qy-state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: a hole-burning study. Pieper J; Irrgang KD; Rätsep M; Voigt J; Renger G; Small GJ Photochem Photobiol; 2000 May; 71(5):574-81. PubMed ID: 10818788 [TBL] [Abstract][Full Text] [Related]
13. Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing. Pieper J; Rätsep M; Irrgang KD; Freiberg A J Phys Chem B; 2009 Aug; 113(31):10870-80. PubMed ID: 19719274 [TBL] [Abstract][Full Text] [Related]
14. Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States. Herascu N; Hunter MS; Shafiei G; Najafi M; Johnson TW; Fromme P; Zazubovich V J Phys Chem B; 2016; 120(40):10483-10495. PubMed ID: 27661089 [TBL] [Abstract][Full Text] [Related]
15. From red to blue to far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? Wientjes E; Roest G; Croce R Biochim Biophys Acta; 2012 May; 1817(5):711-7. PubMed ID: 22406625 [TBL] [Abstract][Full Text] [Related]
16. Spectral inhomogeneity of photosystem I and its influence on excitation equilibration and trapping in the cyanobacterium Synechocystis sp. PCC6803 at 77 K. Melkozernov AN; Lin S; Blankenship RE; Valkunas L Biophys J; 2001 Aug; 81(2):1144-54. PubMed ID: 11463655 [TBL] [Abstract][Full Text] [Related]
18. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes. Trinkunas G; Holzwarth AR Biophys J; 1996 Jul; 71(1):351-64. PubMed ID: 8804618 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo simulations of excitation and electron transfer in grana membranes. Gibasiewicz K; Adamiec M; Luciński R; Giera W; Chełminiak P; Szewczyk S; Sipińska W; Głów E; Karolczak J; van Grondelle R; Jackowski G Biochim Biophys Acta; 2015 Mar; 1847(3):314-327. PubMed ID: 25524819 [TBL] [Abstract][Full Text] [Related]
20. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Somsen OJ; van Grondelle R; van Amerongen H Biophys J; 1996 Oct; 71(4):1934-51. PubMed ID: 8889168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]